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Abstract

The Materials Project (MP) is a community resource for theory-based data,
web-based materials analysis tools, and software for performing and analyzing
calculations. The MP database includes a variety of computed properties such
as crystal structure, energy, electronic band structure, and elastic tensors for
tens of thousands of inorganic compounds. At the time of writing, over 40,000
users have registered for the MP database. These users interact with this data
either through the MP web site (https://www.materialsproject.org) or through
a REpresentational State Transfer (REST) application programming interface
(API). MP also develops or contributes to several open-source software libraries
to help set up, automate, analyze, and extract insight from calculation results.
Furthermore, MP is developing tools to help researchers share their data (both
computational and experimental) through its platform. The ultimate goal of these
efforts is to accelerate materials design and education by providing new data
and software tools to the research community. In this chapter, we review the
history, theoretical methods, impact (including user-led research studies), and
future goals for the Materials Project.

1 History and Overview of the Materials Project

Materials scientists and engineers have always depended on materials property data
to inform, guide, and explain research and development. Traditionally, such data
originated almost solely from experimental studies. In the past 10–15 years, it has
become possible to rapidly generate reliable materials data using scalable computer
simulations of the fundamental equations of physics such as the Schrödinger
equation. This paradigm shift was induced by a combination of theoretical advances,
most notably the development of density functional theory (DFT), algorithmic
improvements, and low-cost computing.

The Materials Project (MP, or “The Project”) was founded in 2011 as a
collaborative effort to leverage ongoing advances in theory and computing to
accelerate the research and design of new materials. The Project rests on a
comprehensive database of predicted properties of materials that is the result of
executing millions of DFT simulations on supercomputing resources. At the time of
writing, this database includes >69,000 inorganic materials with crystal structures
and total energies, >57,000 materials with electronic band structures, >48,000 with
electronic transport properties (Fig. 1) (Ricci et al. 2017), >30,000 with XANES

https://www.materialsproject.org
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Fig. 1 Example of a large electronic transport data set in MP generated through computations.
Each point represents one compound, with Seebeck coefficient versus electron conductivity
(divided by τ ) plotted. The color represents the thermoelectric power factor (S2σ ), and the point
size is proportional to the bandgap (Ricci et al. 2017). This data set is available through the
MPContribs platform (see Section 6.2) at: https://materialsproject.org/mpcontribs/boltztrap

k-edge spectra (Dozier et al. 2017), >15,000 with conversion battery properties,
>6000 with elastic tensors (de Jong et al. 2015a), >3,000 with intercalation battery
properties, >1,000 with piezoelectric tensors (de Jong et al. 2015b), >1,000 with
dielectric tensors (Petousis et al. 2017), and > 1000 elemental surface energies (Tran
et al. 2016). This database is continually expanding with more materials and more
properties (see Fig. 2 for an example of properties listed in the current iteration).

The Project launched its publicly accessible web site in October 2011 and has
since grown into a multi-institution collaboration as part of the US Department of
Energy Office of Basic Energy Sciences (BES). The web site provides access to
the database as well as applications (or “apps”) that combine and visually present
the data for specific analyses such as phase diagram generation or battery electrode
evaluation. The MP web site hosts more than 40,000 registered users worldwide
consisting of a diverse set of researchers and students from academia, industry,
and educational institutions (Figs. 3 and 4). The diversity of the audience base
highlights the usefulness of a theory-based materials database across the spectrum
of education, research, and development activities.

Apart from the core data and web site, MP helps develop and maintain a set
of open-source software libraries for setting up, executing, analyzing, and deriving

https://materialsproject.org/mpcontribs/boltztrap
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Fig. 3 Total number of registered users since release of the MP web site and fraction of users
belonging to various institution types

Fig. 4 Amount of Materials Project user sessions by city for the month of October 2017. Sessions
originated in 112 countries, 36 of which totaled >100 sessions
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insights from calculations. These libraries, which include pymatgen (Ong et al.
2013), custodian, FireWorks (Jain et al. 2015), and atomate (Mathew et al. 2017),
have been used by hundreds of researchers worldwide. The newest additions to
MP allow users to suggest compounds for computation as well as contribute their
own data (theoretical or experimental) to the database. Furthermore, MP hosts
educational workshops focused on its online and programmatic infrastructure, and
the MP web site has become an integral teaching tool in several materials science
courses.

As the state of the art in theory and computing are bound to change, the specifics
of MP’s data, scope, capabilities, and infrastructure will no doubt change as well.
Nevertheless, this chapter summarizes the current state of the Materials Project.

2 Underlying Theoretical Formalism and Development of
Materials Design “Apps”

2.1 Theoretical Methods

The Materials Project’s core data set consists of results obtained from density
functional theory (DFT) calculations on a library of inorganic compounds. DFT
is well suited for creating a database of materials properties because it has fewer
parameters that require tuning for different materials systems and because the
computational cost for small- to medium-sized (approximately 300 atoms or less)
systems is manageable. DFT methods have become standardized to a large extent
such that various software implementations with slightly different parameters (e.g.,
pseudopotentials) produce very similar results (Lejaeghere et al. 2016).

Nevertheless, selecting a robust set of parameters for high-throughput computa-
tions is still not trivial. It is important to emphasize there is currently no perfect
DFT functional as they are all approximations to the complete set of physics
that define materials phenomena. For example, strongly correlated systems remain
challenging. It is typically possible to treat even complex systems with specialized
methods in single studies. However, when constructing a large database with many
compounds, such specialized treatment is difficult to achieve practically and would
also lead to inconsistent and often incompatible results between various compounds.
Additionally, one must more carefully balance computational costs with expected
information gain. Whereas a single study may not be noticeably impacted if its
calculations are over-converged numerically and use 50% more computing power
than necessary, such a situation would severely slow down a high-throughput
database project such as MP that consumes tens of millions of CPU hours of
computing per year. Thus, MP must make practical compromises that try to maintain
the accuracy of a specialized, precise calculation while being completely automatic
and computationally efficient and maintaining clarity and consistency of procedure
with other calculations.

One of the approaches used by the Materials Project to achieve this balance is to
split materials into two classes and apply a different DFT functional to model each



The Materials Project: Accelerating Materials Design Through Theory-Driven. . . 7

class. The first class of compounds are transition metal oxides and sulfides. Standard
DFT functionals such as the local density approximation (LDA) (Kohn and Sham
1965) and the generalized gradient approximation (GGA) (Perdew et al. 1996) are
not accurate for these compounds due to more pronounced self-interaction error
as well as errors in orbital occupation from lack of derivative discontinuity (Zhou
et al. 2004; Cococcioni and de Gironcoli 2005). One computationally efficient way
to treat these compounds is with the GGA+U framework, in which a Hubbard-like
correction is applied to localized d orbitals. The specific U corrections are fitted to
formation energy data as described previously (Wang et al. 2006). It is important to
note that these same U values may not be optimal for accurately representing other
properties such as the electronic band structure. The second class of compounds
encompasses all other systems and is treated with the standard GGA-PBE functional
(Perdew et al. 1996).

By allowing different compounds to be treated with two different functionals, it
is possible to enhance accuracy of the resulting database compared to using only
a single functional such as GGA for the entire database. However, one must then
additionally design a scheme to mix results (e.g., total energies) obtained from
different methods since these results are not directly compatible. In the Materials
Project, these adjustments between results from different functionals are made by
benchmarking to experimental formation enthalpy data (Jain et al. 2011b). Figure 5
depicts the effects of one instance of this by presenting Fe-P-O phase diagrams
using the GGA only, GGA+U only, and mixed GGA and GGA+U total energies.
Only the version of the diagram that uses two different functionals (with the mixing
adjustment applied) reproduces all known stable phases in this system.

Another practical measure taken by the Materials Project pertains to molecular
systems. Although molecular systems and solids can be modeled within the same
density functional theory framework (e.g., PBE-GGA with plane-wave basis sets),
computed reaction energies that include both molecules and solids typically exhibit
high errors because self-interaction errors differ significantly between systems char-
acterized by local (e.g., molecules or highly correlated systems) and nonlocal (e.g.,
metals) electrons (Grindy et al. 2013; Perdew et al. 1998). Similarly, intermolecular
interactions present in gases, 2D materials, and liquids that are not well described by
pure GGA functionals present further challenges for constructing a comprehensive
thermodynamic framework derived from DFT that avoids such systematic errors.

Rather than calculating the liquid/gas energies directly, MP adjusts the energies
of several elements that are liquid or gaseous at room temperature based on
experimental reaction enthalpies such as the oxidation of metals (Wang et al. 2006).
All of the following compounds have adjusted energies to better reproduce reaction
energies with solid phases: O2, N2, Cl2, F2, and H2.

Finally, we mention that MP also adjusts certain numerical parameters based
on the type of compound. For example, MP uses a denser k-point mesh when
calculating metals (as determined from an initial, loose k-point mesh calculation)
versus semiconductors and insulators. In addition, the numerical tolerances used by
the Materials Project have been growing more precise over time. The parameters
used for each calculation are available via the Materials Project web site, and
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Fig. 5 Fe-P-O ternary phase diagrams built using total energy calculations from (a) only GGA,
(b) only GGA+U, and (c) mixing GGA and GGA+U functionals. Only the mixed phase diagram
reproduces all known phases as stable on the phase diagram. (Reprinted figure with permission
from Jain et al. (2011b). Copyright 2011 by the American Physical Society)

the most current description of parameter settings is provided at https://www.
materialsproject.org/docs/calculations.

2.2 “Apps” for Data Exploration

Much of the value of the MP data set comes from secondary analyses that are
performed on top of the raw data. These secondary analyses often combine multiple
data points and can take the form of common diagrams used in materials science
(e.g., phase stability diagrams or Pourbaix diagrams), application-specific materials
design tools (e.g., evaluating MP compounds as battery electrodes), or simply as
additional information (e.g., reporting potential substrates that might form coherent
lattices with a target material). Such tools are vital for helping users extract as much
value as possible from the data sets.

https://www.materialsproject.org/docs/calculations
https://www.materialsproject.org/docs/calculations
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The Materials Project develops the methodologies to perform many such sec-
ondary analyses and releases them both as open-source software implementations
(through the pymatgen (Ong et al. 2013) package) and as web applications
(“apps”). Apps provide a visual, user-friendly interface to these powerful and often
complex analysis routines. In the following example, we describe the underlying
methodology as well as the accompanying app for generating and manipulating
phase diagrams.

2.2.1 Phase Diagram App
Phase diagrams have multiple applications in materials science. Traditional phase
diagrams generated from experiments show not only stable phases but also delineate
solubility limits and temperature dependence. In contrast, because MP currently
only models materials at zero temperature and pressure and does not model
solubility limits, the resulting phase diagrams might be more accurately referred to
as phase stability diagrams (we use the terms interchangeably here). Nevertheless,
such phase stability diagrams show the stable phases in a given chemical system
as well as the relevant phase equilibria at various compositional ratios. One major
application of such phase diagrams is to serve as a “reality check” for new
hypothetical materials. If the energy of that proposed material is low enough to
be on or nearly on the phase stability diagram, there is a higher probability that the
material will be stable enough to be synthesized in the lab (Sun et al. 2016). Phase
stability diagrams are also useful for identifying possible decomposition products
that might compete with a target phase.

Generating such computational phase diagrams requires knowledge of the
formation energies of all possible materials within a chemical system. For example,
calculating a ternary phase diagram requires knowledge of the formation energies of
all the relevant unary, binary, and ternary phases in that system. For a typical ternary
system, calculating the energy for all known phases would require several dozen
calculations. However, because the MP database already contains precomputed
energies for most known inorganic compounds, one can now avoid running all these
simulations and directly create reasonably complete phase diagrams using the MP
data set.

Mathematically, the set of stable points on a phase diagram can be determined
using the convex hull construction, which is a method of finding the minima as a
function of n degrees of freedom (Barber et al. 1996). By calculating the convex hull
for the total energies of various calculated DFT energies, globally stable structures
can be found as well as the various tie-lines that connect stable phases. The convex
hull construction can be used to construct phase diagrams for an arbitrary number
of components.

Many known compounds are not thermodynamically stable, i.e., they do not
appear on phase stability diagrams (Sun et al. 2016). An additional metric is then
necessary to distinguish the degree of metastability for these compounds. The
construction of a convex hull provides an envelope of stability. Compounds on the
convex hull are stable, while compounds above the hull in energy are metastable.
The energetic distance to the hull at the composition is thus a quantifiable metric
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and directly related to the metastability of that compound. A lower energy above the
hull is typically desirable for synthesis because it implies less of an energy penalty to
form the target compound compared to the known stable phase. Many of the known
metastable compounds in the Materials Project are within 15 meV/atom of the hull,
but depending on chemistry can extend past 60 meV/atom above the hull (Sun et al.
2016). While this analysis focuses on the metastability of known compounds, there
is still work needed to quantify the limits of metastability.

Thus far we have described the formalism for closed systems, i.e., ones in which
the stoichiometric ratio of elements is fixed, but the same formalism can be equally
applied to open systems in which one or more elements are held at a fixed chemical
potential rather than held to a fixed amount. For example, experiments may be
carried out in air, which essentially serves as an infinite reservoir of atmospheric
elements such as oxygen and nitrogen at particular chemical potentials. The same
experiment under flowing argon gas would still represent an open system, but one
in which the chemical potentials of those elements are greatly reduced. Thus, in
environments that are open to a particular element, the relevant control variable is
the chemical potential of that element (μi) rather than its compositional value. The
chemical potential is then treated as an external variable to obtain a grand potential
phase diagram.

Users of MP need not be familiar with all the methodological details (Ong et al.
2008) of computational phase diagram construction to generate and use them. The
MP web site allows users to simply type (or click on a visual periodic table) the
elements for the system they are interested in. This will generate a phase diagram
that will graphically display the phase diagram as well as a list of stable and
metastable/unstable materials. Figure 6 shows a screenshot of the MP phase diagram
app for a grand potential phase diagram for Li-Fe-P-O with an oxygen potential of
−5.288 eV. Note that since the oxygen composition is prescribed by the potential, it
doesn’t exist as a degree of freedom in the phase diagram, collapsing the quaternary
phase diagram into a ternary phase diagram (with a slider for controlling the oxygen
chemical potential).

Other apps similarly make available powerful underlying methodologies to a
broad audience. For example, similar to the grand potential phase diagram, Pourbaix
diagrams are projections of global stability into potential-pH space to model
electrochemical stability. A methodology for calculating such diagrams by utilizing
experimentally measured free energies of aqueous ions and the calculated DFT
energies for solid phases available in the Materials Project was previously developed
(Persson et al. 2012). This methodology was incorporated into a “Pourbaix app”
that allows users to simply select the chemical system of interest, elemental ratio,
and concentration of ions in order to generate a familiar Pourbaix diagram that
leverages the MP data set and that can be visually and interactively explored by
the user. In addition, the stability of individual materials relative to the most stable
decomposition product may be generated as a heatmap overlaid on the Pourbaix
diagram, providing users with a tool to estimate metastability under aqueous
conditions (Singh et al. 2017).
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Fig. 6 The Li-Fe-P-O ternary grand potential phase diagram open to oxygen as generated by the
Materials Project’s “phase diagram” app

3 Computation Infrastructure and Software Tools

Developing and maintaining calculation databases such as the Materials Project
requires considerable attention to computing and software infrastructure. At the
time of this writing, the Materials Project is the result of over one million individual
calculations that represent over 100 million central processing unit (CPU) hours of
computing time invested. Setting up, executing, analyzing, and managing all these
calculations are far from straightforward. Here, we describe the infrastructure of the
Materials Project at the time of this writing. However, we note that the economics
of computing as well as the optimal choice of software libraries can change very
quickly. The Materials Project infrastructure is therefore constantly evolving to
apply the latest developments and best practices in computer science and software
engineering to the field of materials science.
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3.1 Computing Resources

The Materials Project (MP) has employed high-performance computing (HPC)
resources at the US National Energy Research Scientific Computing Center
(NERSC) and elsewhere, consuming over 100 million of CPU hours to date.
Many-task computing workflows (Raicu et al. 2008) are increasingly using HPC
environments because these resources typically offer the potential for large amounts
of total computing time, good hardware specifications (e.g., moderate to high
memory), and adequate storage. However, HPC environments present several
challenges for running high-throughput calculations because these environments
were originally designed to serve the needs of a small number of large, highly
parallel applications that run for predictable times and perform all input/output to
disk. In contrast, high-throughput calculations are typically extremely numerous
and limited in achievable parallelism and require unpredictable, often very long
total run times. In addition, they are often more suited to management by external
services rather than solely through flat files on disk. To overcome these challenges,
the Materials Project has developed a software library for running high-throughput
calculations called “FireWorks” (Jain et al. 2015) that solves many of the computing
challenges associated with running high-throughput jobs on HPC resources.

3.2 Choice of Database Software

Many portions of a high-throughput calculation workflow require efficient storage,
retrieval, and search of information, including:

• Managing the state of high-throughput calculations
• Storage of the raw calculation results, and
• A searchable set of processed data for data dissemination and analysis

The Materials Project has chosen to use a not-only-SQL (NoSQL) “document
store” (Cattell 2011), MongoDB, as its main database technology for these tasks
(raw output files are also preserved). We note that this represents a shift from a
other SQL-based data management strategies used previously in high-throughput
computational materials science (Jain et al. 2011a). This decision was made
primarily because MongoDB accommodates both the data heterogeneity and rapid
pace of data model development required by the Materials Project. For example,
unlike typical SQL relational database management systems (RDBMS) such as
MySQL and PostgreSQL, MongoDB does not require a pre-designed, normalized
schema between all data types at the beginning of the project. The types of data
being stored continually evolve as we add new types of calculations into the project.
By choosing MongoDB, MP can adapt quickly to these changes with small changes
in application code instead of refactoring complex relational schemata.
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Among document-oriented datastores, MongoDB is notable for its simple but
powerful query language, ease of administration, and good performance on read-
heavy workloads where most of the commonly accessed data (the so-called
working set) can fit into memory. Its relative weaknesses for linking disparate data
(database “joins”) and write-heavy workloads are a reasonable trade-off for MP. A
productivity benefit of MongoDB is that both the query language and the native data
model are JavaScript Object Notation (JSON) (Bray 2017), which is the standard
data format for modern web applications and easily represented and manipulated as
native data types in the Python programming language (Van Rossum et al. 2007) in
which our other software libraries are written. Thus, users familiar with Python and
in particular its “dict” object can adapt quickly to understanding and developing data
models with MongoDB. Our experience is that these aspects have allowed many
more members of our team to collaborate on database development compared to
our historical use of RDBMS in which only one or two members of the team were
familiar enough with the system to make changes. More details on our experiences
and challenges encountered in deploying a centralized datastore of this type within
a scientific HPC ecosystem are described in Gunter et al. (2012).

3.3 Software Stack

3.3.1 Software to Perform and Analyze DFT Calculations
At the time of this writing, the Materials Project primarily uses density functional
theory as implemented by the Vienna Ab Initio Simulation Package (VASP) (Kresse
and Hafner 1994; Kresse and Furthmüller 1996). However, it is likely that other
software packages such as ABINIT (Gonze et al. 2016) will play a larger role in
MP in the future. Regardless of the choice of DFT implementation, the procedure
for performing calculations involves many steps outside the core simulation. These
steps include:

• Setting up the geometry for the material or system of interest
• Defining a workflow of calculations to compute the properties of interest
• Executing the calculations and correcting possible errors
• Analyzing, storing, and organizing the output data

The Materials Project has developed a comprehensive suite of software tools to
accelerate and assist in these steps (see Fig. 7 for an overview).

Most of the compounds currently in the Materials Project use bulk crystal
structure geometries as reported in the Inorganic Crystal Structure Database (ICSD)
(Belsky et al. 2002). However, the computation of many properties requires per-
forming algorithmic operations on these geometries. Examples include determining
an appropriate ordered cell for sites with partial occupancies, creating appropriate
slabs for surface calculations, and performing a series lattice deformations for
computing elastic tensors. We have implemented routines for such geometry modi-
fications in Python as part of the pymatgen (Ong et al. 2013) open-source software
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Fig. 7 Various steps involved in data generation and analysis along with the relevant software
stack for the Materials Project infrastructure

library. In many cases, these routines are directly implemented in pymatgen,
whereas in others we provide an object-oriented Python wrapper to libraries released
by the community such as spglib (Togo 2018) and enumlib (Hart and Forcade 2008).
We note that the growth of web-based collaboration presents the opportunity for
another method of generating new compounds: crowdsourced user suggestions. In
this method, crystal structures designed by the user community (either offline or
through Materials Project tools) are used as starting points for the calculation with
the results reported back to the community. In its first three years of operation,
this “MPComplete” service has been employed by over 800 unique users and has
resulted in over 8,300 new materials added to MP’s public database.

Depending on the property to be studied, a DFT “calculation” may in fact involve
a series of individual computations that require data passing and modifications
of geometry or input settings between computations. The set of calculations
required for obtaining a desired output property, along with the dependencies and
data passing requirements between these calculations, define a “workflow.” The
Materials Project has developed two software libraries in the Python programming
language to manage such workflows. The first library, called “FireWorks” (Jain
et al. 2015), is a general-purpose workflow library. FireWorks does not contain
any materials science or DFT-specific code. Its scope is to provide a framework
for users to define arbitrary sequences of calculations, store them in a database,
execute them on various types of computing resource, and manage the status of
potentially millions of workflows across systems. Thus, FireWorks is compatible
with a broad class of scientific computing workflows (although it is best suited for
high-throughput applications) and is frequently used outside the field of materials
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science. The second library for workflow creation, “atomate” (Mathew et al. 2017),
contains specific materials science workflows implemented in FireWorks and using
pymatgen as a base library. The atomate package can be thought of as providing
a library of materials science workflow implementations (e.g., standard workflows
for electronic band structure, elastic properties, and piezoelectric, dielectric, and
ferroelectric properties). Atomate users can specify an input geometry for a
material and the desired workflow type, and atomate will provide a FireWorks-
based implementation of that workflow that is ready to execute at supercomputing
centers. Furthermore, atomate leverages the pymatgen library to automatically
parse calculation outputs and create a database of materials properties that can
be queried by the user. Various features in FireWorks and atomate allow for
customization of behavior to specific situations, from low-level issues (such as
interacting with various queueing systems) to high-level issues (such as running the
same workflow with multiple DFT functional choices). Calculation workflows can
also automatically adapt their procedure for later calculations based on the results
obtained from earlier calculations.

When executing the calculation, it is possible to encounter various errors relating
to calculation convergence. The Materials Project has developed a type of job
wrapper to simulation software (e.g., VASP Kresse and Hafner 1994; Kresse and
Furthmüller 1996 or QChem Kong et al. 2000) called “custodian” (Ong et al. 2014)
that automatically monitors the output files of the calculation and automatically fixes
errors (by stopping the job, changing the input files, and restarting the job) according
to a set of rules. The custodian software can also be used to automate linear
sequences of calculations (e.g., a convergence protocol that tightens numerical
parameters until no change in output is achieved).

Once the calculation is executed, the results are parsed and stored in various
database collections. Raw data is parsed by pymatgen as a component of atomate
workflows. We note that pymatgen can parse output files (into structured data or
as Python objects with callable functions) and can also perform high-level data
analyses such as phase diagram creation or plotting. Separately, we employ code
called “builders” that collect, reorganize, and post-process raw data into separate
database collections that are more amenable to analysis than raw data collections.
For example, a builder might collect together all calculated results on a single
material to build a single summary report (a “material” document) for that com-
pound. A builder might also collect together information from multiple compounds,
perform an analysis, and store the results in a database. In service of such processes,
we develop and use lightweight libraries to automate, simplify, and ultimately
streamline the process of creating MongoDB databases. Our general “builder” code
could be useful to any project that needs to perform extract-transform-load (ETL)
operations with MongoDB. For example, they can be run in parallel without explicit
coding of parallelism by the author. This allows CPU-intensive transformations of
the data to run much faster on multi-core machines, which includes most modern
hardware (integration with the Message Passing Interface (MPI) standard to enable
parallelization across supercomputing resources is in development). Furthermore,
facilities in our code for incremental building allow successive builds of source
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MongoDB collection(s) to only operate on the records added since the last build,
which can save significant amounts of computation time. Overall, the builder
framework allows for efficient generation and reliable updating of multiple database
collections that are tailored for different types of query and usage patterns.

3.3.2 Software for Data Dissemination: The Web Interface and
RESTful API

The Materials Project places a strong emphasis on user experience, user interface
design, and ensuring that data is efficiently disseminated so that a wide variety
of users are able to apply the data for research, development, and education
(Jain et al. 2016b). To this end, we have built an interactive web portal (https://
www.materialsproject.org) focusing on the scientist as the end user. This web
portal is built using the mature Django web framework (Dja 2015) due to its
clean separation of front-end views from the back-end business logic. Django is
written in the Python programming language, which eases integration with the
pymatgen library and the growing scientific software ecosystem in Python. Django
also provides a clear structure for organizing a so-called project into “apps,”
which maps well to our various interactive views across materials data such as
compositional phase diagrams, Pourbaix diagrams, or domain-specific applications
such as battery electrode searching. Additionally, Django features robust tools for
user management, simplifying procedures for authentication (who someone is) and
authorization (what a known someone can access/do). These tools are used, for
example, to provide prepublication “sandboxes” for certain user groups within
which to explore and perform analyses across private data sets prior to public
release.

In order to tighten feedback loops for users searching data and using various
functionalities that may not be applicable to all users, we organize our front-
end code to asynchronously load both data and additional code using standard
Asynchronous JavaScript And XML (AJAX) and Asynchronous Module Definition
(AMD) protocols. Our choices of specific libraries for the web interface continue
to evolve as trade-offs between established best practices (that are attractive for
a system intended for continuous and reproducible use over many years) and
emerging standards (that simplify ongoing maintenance and adding features).

Although many exploratory research studies are well suited to a graphical
interface such as the one described above, other studies require programmatic access
to this database. With this in mind, we have chosen to expose our data through an
application programming interface (API) called the Materials API (MAPI) (Ong
2015). MAPI allows users to develop computer programs that can query, process,
and download Materials Project data through a well-defined interface. To date, the
MAPI has served more than 100 million requests for materials data for over 1500
distinct users.

APIs are used extensively throughout technology and software development.
They serve to clearly and explicitly define a protocol for communicating with a
piece of software or other system that is accessed programmatically. At the time of
this writing, the most common framework for APIs that operate over the Internet

https://www.materialsproject.org
https://www.materialsproject.org
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is REpresentational State Transfer (most commonly referred to as REST). The
most simple use case for REST APIs is to map web uniform resource identifiers
(URIs) to data (similar to how a computer’s file system maps data to directories and
filenames). In RESTful systems, information is organized into resources, each of
which is uniquely identified via a uniform resource identifier (URI). In the case of
Materials Project, each document or object (such as a computational task, crystal
structure, or materials property) is represented by a URI (see Fig. 8 for an example)
and an HTTP verb that can act on that object (GET, POST, PUT, DELETE, etc.).
In most cases, this action returns structured data that represents the object, e.g., in
the JavaScript Object Notation (JSON) format. For example, to request energy data
(as calculated using VASP) on all Fe2O3 compounds in the Materials Project
database, the URL shown in Fig. 8 could be constructed according to the protocol
specified in the MAPI. We note that since MAPI is a RESTful system, users can
interact with the MP database regardless of their computer system or programming
language (as long as it supports basic HTTP requests.)

REST APIs allow for more powerful behavior to be seamlessly integrated
alongside such basic information retrieval. For example, unique strings of characters
associated with specific users (called API keys) can be used to manage access to
resources. This is done by implementing the API in such a way that requires users
to include their API keys in requests they make to the system and then implementing
controls on the back end of the system to handle permissions and activity logging.
RESTful APIs can also accept filtering parameters or other variables within requests
to give users greater control over what they send or receive from a database.
Moreover, URLs can be linked to more than just static resources; they can also point
to back-end functions that enable interaction between a user program and MP. An
example might be linking a URL such as “https://www.materialsproject.org/rest/
v1/materials/snl/submit” to a function registering a request to compute a desired
structure embedded in an http POST parameter.

Use of such an API offers a number of advantages. First, users do not have to be
concerned with the actual architecture of the database they are interacting with or
the details of its implementation since the API serves as a kind of “middleman” in

https://www.materialsproject.org/rest/v2/materials/Fe2O3/vasp/energy

Identifier, typically a
formula (“Fe2O3”), id
(“mp-1234”) or chemical
system (“Li-Fe-O”)

Request
type

Data type
(vasp, exp,
etc.)

PropertyPreamble

Fig. 8 An example of the URL structure for the Materials API. (Reprinted from Ong (2015) with
permission from Elsevier)

https://www.materialsproject.org/rest/v1/materials/snl/submit
https://www.materialsproject.org/rest/v1/materials/snl/submit
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the process. From a user’s perspective, the procedure to interact with the database
is consistent over time, freeing the development team to make back-end changes
without impacting the user’s mode of interaction with the data. In addition, access
to the database is system-agnostic. Anyone can develop an application in whatever
environment they wish on top of the API with the confidence that it will be
compatible with the MP database. Moreover, the data that users receive is always
up-to-date, with no extra effort on their part, and the capabilities of the API can be
seamlessly improved over time to give users access to even more powerful queries
and analyses without creating new procedures for their use.

Although RESTful APIs can be intimidating to novices, they can be made more
user-friendly by making the URL scheme explorable and hiding complexity through
intermediate software layers. For example, a high-level Python interface to the
MAPI called the MPRester is provided in the pymatgen (Ong et al. 2013) code
base that allows users to obtain properties like crystal structure or electronic band
structure using Python functions rather than explicit HTTP requests. We note that,
whenever possible, the main Materials Project web site front end also avoids direct
database queries and uses MAPI to query and access data in a way that is more
maintainable and less prone to failure than custom interactions with the back-end
software.

4 User Applications of the Materials Project to Research and
Design Problems

Since its release, users of the Materials Project have used its data and tools in several
hundred research studies (as highlighted in a previous review Jain et al. 2016a).
In this section, we describe several recent examples and outline general strategies
that have emerged in the literature for screening and designing materials for
specific applications. While several of these studies involve active MP collaborators
(Dagdelen et al. 2017; Yan et al. 2017; Chen et al. 2016; Zimmermann et al. 2017),
a large fraction of the most recent studies that we found through a Web of Science
search are from users that are not involved in Materials Project (Sendek et al. 2017;
Shi et al. 2017; Ashton et al. 2017; Cheon et al. 2017; Choudhary et al. 2017; Lau
et al. 2017; Shandiz and Gauvin 2016). This latter class of users perhaps most clearly
demonstrates that it is possible to accelerate the research and design of new materials
by generating and sharing materials information with the research community.

4.1 Phase Diagrams and Compound Stability

In studies that aim to improve our understanding based on experimental evidence
or to synthesize new materials for a given application (Bayliss et al. 2014;
Krishnamoorthy et al. 2015; Martinolich and Neilson 2014), generating phase
equilibrium data is among the most frequently used MP capabilities . For example,
Bayliss et al. conducted a study on a sodium-doped strontium silicate material
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that had been claimed to feature remarkably high oxide ion conduction (Bayliss
et al. 2014). By combining experiments (neutron powder diffraction, two-point
AC impedance spectroscopy, time-of-flight secondary ion mass spectrometry) and
DFT calculations, they could show that the conductivity was lower than previously
reported and that the high energetic cost of oxygen vacancy formation was the
underlying reason. Data from MP was used to cross-check the study’s results for
the DFT-PBEsol-derived major limiting phases of the SrSiO3 decomposition.

Shi and co-workers (Shi et al. 2017) employed a high-throughput DFT screening
approach for stable delafossite and related layered phases of composition ABX2,
where A and B are any elements from the periodic table and X a chalcogen (O, S,
Se, and Te). From the initial materials set of 15,624 compounds, 285 were found to
be within 50 meV/atom from the convex hull. While the majority of these structures
are contained within the Materials Project database, the authors highlight that 79
of these stable systems are absent. This underscores that crystal structure databases
such as MP still have considerable growth potential in terms of compound com-
pleteness and highlights the role that user-based compound submissions (through
the MPComplete service, cf., Sect. 6.1) could play in extending such databases.

A similar example is the work by Krishnamoorthy et al. (2015), who used a high-
throughput DFT-based screening to identify lead-free germanium iodide perovskites
that could be used for light harvesting. The researchers computed the PBE bandgaps
of 360 AMX3 compositions, uncovering 9 interesting candidates. MP phase equi-
librium data were used to further reduce the list by requiring that the materials be
thermodynamically stable against decomposition to simpler binary phases. Three
materials were left from the computational screening, RbSnBr3, CsSnBr3, and
CsGeI3, of which the latter was successfully synthesized and characterized. We
refer the interested reader to a previous review article Jain et al. (2016b) for further
examples of experimental studies conducted using MP-calculated phase diagrams.

4.2 Crystal Structure Analysis, 2D Materials, and Machine
Learning

The large corpus of data available in the Materials Project can serve as a test bed for
the development of new algorithms for processing of crystallographic data. This is
the case for Ashton and co-workers (Ashton et al. 2017) who developed a topology-
scaling algorithm to identify the dimensionality of a given crystal structure. They
used the algorithm to search the MP database for materials that could be prospective
2D materials; 826 stable layered materials were identified, of which 680 were
predicted to be feasible 2D material candidates based on the calculated exfoliation
energy.

Similarly, Cheon and co-workers (Cheon et al. 2017) present an algorithm
that can identify the dimensionality of weakly bonded subcomponents of a three-
dimensional crystal structure. They apply this algorithm to >50,000 MP materials
and identify 1,173 two-dimensional layered materials as well as 487 weakly bonded
one-dimensional molecular chains, representing an order of magnitude increase
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in the number of identified materials. Furthermore, 325 of these materials were
suggested to be piezoelectric monolayers.

Interestingly, by specifically exploiting a weakness in typical DFT calculations
that the dispersion forces are not well accounted for and thus lattice parameters
of layered materials are often significantly inaccurate, Choudhary and co-workers
(Choudhary et al. 2017) were able to identify two-dimensional material candidates.
To this end, the authors required that the deviation between lattice constants from
experiments and (mainly) MP database be ≥5%. In order to validate their approach,
the authors used an accepted criterion based on the exfoliation energy and found
that 88.9% of their predictions met this test.

Many structure-property relationships that form the basis of design rules in
materials science are based on information pertaining to the local coordination
environment. Therefore, it is highly desirable to have tools that effectively and
efficiently identify basic local structural motifs such tetrahedra, octahedra, bcc,
fcc, and hcp environments. Zimmermann et al. provided classification criteria for
these motifs that are based on local structure order parameters, which were used
to automatically identify these motifs in the entire Materials Project database.
Additionally, these tools may also lead the way to alternative structure matching
avenues (Zimmermann et al. 2017).

The abundance of data in the Materials Project also provides an opportunity to
develop new machine learning (ML) techniques for modeling materials properties
and for better understanding structure-property relationships. One such example of
this appears in work from Faber et al. (2015) aimed at developing representations
of periodic systems adaptable to ML models. In this study, 4000 structures from
the Materials Project were used to evaluate the generalization error in the predicted
formation energy based on three different crystal structure representation schemes
and using kernel ridge regression, revealing that a sine matrix approach intended to
simulate an infinite Coulomb sum was superior in its efficiency and accuracy.

Similarly, de Jong et al. (2016) demonstrated a machine learning approach to
predicting elastic moduli of k-nary compounds that was effective over a highly
diverse set of chemistries. More specifically, this study used gradient boosting
machine local polynomial regression (GBM-Locfit) over the MP elastic tensor
data set to determine a set of relevant descriptors and to derive elastic modulus
predictions. Ultimately, this model was leveraged to estimate the Vickers hardness
of the entire MP materials library, enabling a rapid search for superhard materials.

In most cases, easily retrievable or computable data such as the space group,
composition, and the density are used in order to predict more complex properties
such as the formation energy or the elastic tensor. Shandiz and Gauvin pursued the
inverse route (Shandiz and Gauvin 2016): the authors conducted a classification
study of 339 materials from the MP database that are potential Li-ion silicate
cathodes (general composition: Li-Si-(Mn, Fe, Co)-O). In particular, they tested
whether or not they could predict the crystal system (monoclinic, orthorhombic,
or triclinic) based on features that were derived from both the input crystal structure
and DFT outputs: the unit cell volume, the bandgap, the number of sites in the unit
cell, the formation energy, and the energy above the convex hull. Pair correlation
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plots of these features indicated that there was no exploitable direct correlation
between any of the features and the crystal system. Decision tree-based methods
(random forest and extremely randomized trees) were shown to yield prediction
accuracies of up to 75%, and these methods performed better than linear and
shrinkage discriminant analysis, respectively, artificial neural networks, support
vector machines, and k-nearest neighbor classification.

4.3 Screening Materials for Applications

Perhaps the most consistent materials screening strategy that has emerged from the
data on the Materials Project is that of filtering materials on successively tighter
criteria appropriate to a given application space. In this approach, a filter common to
most applications is typically on stability via ΔEhull, which can provide an indicator
of whether a compound will be experimentally feasible. As illustrated in Fig. 9,
successive filters in turn reduce the number of materials to be considered until it
reaches a tractable quantity for follow-up with either more sophisticated calculations
or for experimental inquiry.

This was the approach taken by Sendek and co-workers (Sendek et al. 2017) who
searched for new candidate materials that could be used as solid-state electrolytes
for lithium-ion batteries. The authors screened 12,831 Li-containing compounds
from the Materials Project to filter those with high structural and chemical stability,
low electronic conductivity, and low cost, thus, eliminating 92.2% of their initial
materials. Subsequently, an ionic conductivity classification model, which was

Fig. 9 The “funnel” approach to materials screening through successive criterion filtering as
applied to designing materials for solar fuel photoelectrocatalysis by Yan et al. (2017). Such
approaches start with a large list of potential candidate materials and use a series of criteria
(generally of increasing cost or complexity) to reduce the space of possibilities. (Reproduced from
Yan et al. (2017); copyright 2017 National Academy of Sciences)
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trained on 40 crystal structures and associated measurements from literature,
reduced the list of interesting candidates down to only 21 materials. In the latter step,
the consideration of a multi-descriptor model over single-descriptor functions was
critical to achieve predictive power. Many of the remaining 21 materials have not yet
been studied experimentally, which hence offers new opportunities for experimental
electrolyte research.

Identifying structurally similar compounds for the purpose of screening
structure-sensitive properties and classifying materials has also begun to emerge as a
screening strategy and design paradigm. Dagdelen and co-workers (Dagdelen et al.
2017) demonstrate such a screening procedure for predicting new auxetic materials
(compounds with negative Poisson’s ratios). The authors systematically screened
the entire MP database via the Materials Project’s REST API and compared each
structure to α−cristobalite SiO2, one of the only inorganic crystalline materials
previously known to exhibit a negative homogeneous Poisson’s ratio. By coupling
pymatgen’s structure matching algorithm (which can match structures within a user-
defined tolerance irregardless of crystal setting, supercell size, or composition) with
more conventional screening strategies, 30 likely candidates were gleaned from
over 65,000 structures. The full elastic tensor of each candidate was then calculated
and their Poisson’s ratios subsequently derived. Of these 30 structures, 3 were found
to be homogeneously auxetic, and an additional 9 were found to exhibit near-zero
homogeneous Poisson’s ratio, with experimental confirmation ongoing.

An example of in silico screening with the Materials Project that has led to
experimentally confirmed materials discovery was presented by Lau et al. (2017).
These authors searched for promising chemical looping air separation (CLAS) mate-
rials in the MP database through successive criterion filtering (“funnel” approach).
Specifically, the applied search filters included (i) restricting binary and ternary
compounds, (ii) identifying compounds that can undergo oxidation reactions (at this
step, the phase diagram app was employed), and (iii) restricting the temperature and
oxygen partial pressure ranges in which the oxidation reactions would be carried
out to sensible limits. The approach resulted in 5,501 tentative compounds and
20,861 relevant redox reactions. Since the reduction enthalpy and the gravimetric
O2 capacity (Fig. 10) did not reveal any exploitable trends, the authors had to
employ a more heuristic route to reduce the candidate list. First, they required the
reaction complexity and the total number of phases present in the reactions to be
minimal, yielding 292 materials. Second, they decreased the number further to 108
by excluding compounds with expensive and toxic materials as well as reactions
that involved non-oxides after reduction. From the remaining materials, they picked
the ABO3 perovskites because of their flexibility in oxygen stoichiometry without
large structure changes and the ease of synthesizing perovskites in general. They
subsequently synthesized and characterized SrFeO3−δ , which has emerged as a
promising CLAS candidate due to its thermodynamic and excellent cycling stability
as well as its resistance to carbonation over the temperatures of operation (Lau et al.
2017). Further examples of compound discovery with the Materials Project can be
found in prior reviews (Hautier et al. 2012; Jain et al. 2016c).
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Fig. 10 An example of
materials screening for
chemical looping air
separation application using
MP data. Each data point
represents a reduction
reaction for each distinct
compound with the largest
μO2 . The predicted reduction
temperature at
pO2 = 2.1 × 104 Pa for each
reaction is plotted against
ΔHreduction (upper) and O2
gravimetric capacity (lower).
(Reproduced (Adapted or in
part) from Lau et al. (2017)
with permission of The Royal
Society of Chemistry)

5 Outreach

Starting in 2016, the Materials Project has held annual workshops that have hosted
more than 100 attendees from around the world. The workshops cover use of the
Materials Project web site as well its software stack for performing and analyzing
high-throughput calculations. Tutorials for the workshop utilized Jupyter (Ragan-
Kelley et al. 2014) notebooks, which are a form of computer document that
mixes formatted text, editable code, and interactive plots to illustrate a procedure.
Participants were given the option to install the various codes to their own systems
or to interact with a pre-installed environment configured using JupyterHub and
Docker Swarm. The latter option allowed participants to focus on learning to use
the software stack and left the details of individualized setup for later. All tutorials
and course materials from these workshops are available online (Mathew et al. 2016;
Winston et al. 2017).

Apart from the annual workshops, the Materials Project interacts with users in
various ways. For example, MP has created YouTube videos with tutorials on all
aspects of the web site, its various apps, and use of the API, which have had a
total of over 30,000 views at the time of this writing. The Materials Project web
site maintains a general-purpose discussion board (https://discuss.materialsproject.

https://discuss.materialsproject.org/
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org/) that has over 100 monthly active users, over 400 posts, and nearly 200 “likes”
(whereby users quickly mark the helpfulness of posts) as of this writing. Finally, the
MP software stack contains dedicated Google groups and Github issue pages where
users and developers of the software can ask questions or get advice on software
usage; hundreds of tickets have been resolved thus far.

6 Future of Materials Project

The advances in electronic structure theory, numerical algorithms, computing
hardware, and software that have converged to make it possible to develop electronic
structure databases are truly stunning. By leveraging these advancements, the Mate-
rials Project has computed millions of materials properties (e.g., electronic band
structure, thermodynamic properties, mechanical properties, dielectric properties)
across tens of thousands of materials, organized that information into searchable
databases, and built rich web applications around the data in a way that would not
have been possible a decade ago. The future efforts of the Materials Project will
concentrate on further empowering the tens of thousands of scientists who design
and develop new materials. Here, we describe some possible future developments
to enhance property coverage, improve community data import capabilities, and
provide an online materials design environment that leverages modern data analytics
techniques.

6.1 Data Set Expansion

The Materials Project is continually generating new materials data at a rate of
several tens of million CPU hours per year to expand the scope of its database. In
the future, the Materials Project will expand in both breadth and depth: a greater
variety of materials systems will be investigated, and more information will be
calculated about individual materials. In terms of breadth, the Materials Project will
expand to more completely encompass crystals with site disorder, i.e., partial site
occupancies. The Materials Project will also continue its efforts and partnerships
to expand its offerings of data on molecular, i.e., nonperiodic, systems. Finally, the
Materials Project expects to play a more active role in not only computationally
characterizing known materials but aiding experimentalists in the search for new
materials yet to be discovered. In terms of depth, the Materials Project is expanding
its library of computational workflows so that more information is available for each
material in the database. Active areas of effort include phonon calculations and finite
temperature properties, interfaces, spectroscopy, defects, and mapping relations
between mechanical, thermal, and electrical effects. Furthermore, the Materials
Project will leverage new advances in DFT functionals that make it possible to
improve accuracy while still being computationally efficient for high-throughput
computation.

https://discuss.materialsproject.org/
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This data set expansion will require orders of magnitude more computing
resources than is currently employed. The Materials Project will continue to use
“crowdsourcing,” i.e., using input from the user community, as a method to prioritize
various aspects of data set expansion. For example, the MPComplete service
of Materials Project already allows users to both suggest new compounds for
calculation and vote on compounds on which to prioritize more computationally
expensive workflows. MPComplete then automatically integrates the results of each
calculation with MP’s core data set.

6.2 Beyond Simulations: Community-Contributed Materials Data

MP has become a worldwide resource for the materials sciences community, with
over 40,000 users who rely on the portal as a trusted source to accelerate their
research. This presents an opportunity to broaden the scope of MP’s mission
to also include assisting researchers disseminate their own data sets (whether
computational or experimental) to the larger community of materials scientists.
Thus, MP would serve not only as a hub for centrally generated computational
data but would also host and distribute a variety of data sets generated by
research groups worldwide. This will also give users of MP a more holistic picture
of a compound because they would be presented with both computational and
experimental information from a variety of techniques.

For this purpose, we soft-released our general contribution framework, MPCon-
tribs (Huck 2016c, 2017; Huck et al. 2015a,b, 2016a,b), as a sustainable solution
for well-curated data management, organization, and dissemination in the context
of MP. Data as contributed through this framework as well as provenance and
citation information for the contributors can be viewed on the MP web site. Early
adopters are experimenting with MPContribs as a potential dissemination and
hosting platform for their data, expanding the scope of data available through MP.

About a dozen early adopters have released landing pages to their contributed
data sets on https://materialsproject.org/mpcontribs. Figure 11 highlights the land-
ing pages for external studies of MnO2 phase selection, GLLB-SC bandgaps, dilute
solute diffusion, and Fe-V-Co magnetic thin films. The last of these is based on data
measured at the Advanced Light Source at Lawrence Berkeley National Laboratory,
whereas the others are computationally derived. These landing pages can serve as
interactive versions of the accompanying journal publications and allow research
studies to be more easily reproduced and expanded upon.

6.3 MPCite: Citing Materials Data in Publications

The US Department of Energy Office of Scientific and Technical Information
(OSTI) (Elliot et al. 2016) provides the E-Link service, which allows researchers to
submit information about OSTI products (in form of XML meta-data records) and
retrieve persistent digital object identifiers (DOIs) to identify it on the World Wide

https://materialsproject.org/mpcontribs
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Fig. 11 Examples of four different landing pages (representing different types of user-generated
data sets) submitted to MPContribs

Web. DOIs are most commonly used for referencing and locating journal papers
because they provide a unique URL linking to the journal’s online landing page with
more information about the publication. Our open-source software MPCite (Huck
2016a,b) enables the continuous request, validation, and dissemination of DOIs
for all MP compounds. MPCite can also be employed for the assignment of DOIs
to non-core database entries such as theoretical and experimental data contributed
through MPContribs or user-generated analyses or structural data.
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6.4 Data Analytics and Materials Design Environment

The Materials Project aims to not only generate raw data but also to empower
users to make the best use of that data. For example, as described previously, we
have found that many scientific studies conducted by users employ the “apps”
built around the data such as phase diagram plots. As new data capabilities are
established, we will continue to build additional apps to enable users to bridge
the gap between a simple list of materials data and incorporating that data into a
scientific analysis.

The Materials Project will also place additional emphasis on helping users
transform underlying data assets into new insights about structure-property rela-
tionships. In particular, new capabilities will allow users to formulate complex
queries using visual interfaces and perform interactive data analysis and real-time
filtering. Users will be able to rapidly iterate on materials design exploration with
guidance provided by machine learning algorithms as well as traditional theory
calculations. The four components of this vision for a materials design platform
are Query, Process, Visualize, and Model/Compute (see Fig. 12). Next, we discuss
these components in detail.

Query Today, the Materials Project provides a visual web-based search interface to
its underlying databases that is optimal for identifying a set of materials matching a
series of constraints. However, many users require more sophisticated data pipelines
in which one can visually add or remove filters and inspect the results at multiple
points in the analysis or merge results from independent query streams. Such
functionality is already possible for those that are capable of writing computer
programs to fetch Materials Project data through MAPI, but remains difficult for
others. New techniques of allowing users to fetch and interact with the data will be
developed in the future so that one is able to call up exactly the desired data using a
visual query interface.

Process Once a user has compiled a data set of interest through the query tools, the
Materials Project will make it easy for users to add descriptors/features to the data
in a way that aids visualization, interpretation, and model building. We envision
a system whereby a user can bring up any set of results (e.g., 100 materials of
interest) and, by clicking a button, can rapidly generate a library of descriptors
such as average electronegativity, local environment type, or polyhedral connection
type for every material in the data set. Users will be able to use these descriptors
to explore potential structure-property relationships through both conventional
data analysis (e.g., visualization, statistical reports) and data mining and machine
learning approaches.

Visualize New software libraries and web frameworks such as Dash by Plotly and
Crossfilter are making it easier than ever to produce high-quality charts on the web
that can be interactively explored and manipulated. Such libraries can enable users
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Fig. 12 Four steps in data exploration and modeling for which MP is currently developing new
features to assist the user. For a detailed description of these steps, see the main text
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to perform a greater fraction of their data exploration on the MP web site itself. As
a simple example, a user may decide to produce a standard X-Y scatterplot between
two user-chosen properties of interest that additionally allows hovering over specific
points to display details of that material. A more complex example would be to
include tools for interactive filtering of the data set, with each modification or
addition of a filter displaying live histogram charts of the distribution of various
materials properties for the materials remaining in the data set. This will allow users
to obtain immediate feedback on the distribution of various properties in their data
set and visualize how various constraints and filters change this distribution.

Model/Compute After data preparation and exploration, the next step is to take
action on the data. One possible action is to produce a model describing the
various relationships between materials properties. For example, one may attempt
to build a model that relates a structural descriptor such as local environment and a
compositional descriptor such as redox active species to a computed output such as
battery voltage. Machine learning models are an interesting way forward because,
once trained and validated, they can be used to obtain nearly instantaneous feedback
on how materials might behave even before any simulations are performed. Thus,
such models can serve as surrogates for more complex and time-consuming physics
simulations for qualitative estimation and ranking purposes. One can also imagine
using these models to guide decisions regarding the computation of new materials.

With these elements in place, a single interactive web session would allow a user
to perform sophisticated queries on the data set, automatically generate descriptors
that could be useful in forming structure-property relationships, visually explore
(and, if necessary, further refine) the data set, produce models that describe the
data, and use those models to drive further computations. Indeed, many of these
elements are present on the Materials Project today. For example, for materials
in which elastic moduli are not yet computed, users can instantaneously obtain an
estimate based on machine learning models (de Jong et al. 2016) as well as upvote
the full computation based on density functional theory. In the future, this type of
mixed usage of both data mining and conventional theory models will become more
prevalent and increasingly natural to users.

6.5 Concluding Thoughts

Ab initio simulations have long been powerful tools for understanding and designing
materials. With advances in high-throughput computing, it is now possible to create
libraries of simulation results that can produce information on materials at a rate far
surpassing that possible in the past. Furthermore, advances in software frameworks
and web technologies have enabled the dissemination of these results in a barrier-
free fashion to thousands of researchers worldwide. The Materials Project is an
effort to make use of these advancements to build a valuable resource of materials
data as well as software tools that transform the way materials are designed. In
addition, the Materials Project aims to make computational materials science a more
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collaborative process through the development of open-source software and through
feedback from experimental groups.

It is an exciting time for theory – never before has there been so much materials
data available or the potential of computation to make an impact in materials design
higher. Experimentalists and theorists alike have been able to use the Materials
Project to conduct scientific and industrial studies in a way that bridges traditional
knowledge gaps. These use cases are likely an early sign of a future in which
theoretical techniques and large materials databases will be increasingly influential
and help to create a new materials design paradigm.
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