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The first full-scale software implementation of the dynamic data evaluation concept{ThermoData Engine
(TDE)} is described for thermophysical property data. This concept requires the development of large
electronic databases capable of storing essentially all experimental data known to date with detailed
descriptions of relevant metadata and uncertainties. The combination of these electronic databases with
expert-system software, designed to automatically generate recommended data based on available experimental
data, leads to the ability to produce critically evaluated data dynamically or ‘to order’. Six major design
tasks are described with emphasis on the software architecture for automated critical evaluation including
dynamic selection and application of prediction methods and enforcement of thermodynamic consistency.
The direction of future enhancements is discussed.

1. INTRODUCTION

The NIST ThermoData Engine1 (TDE) represents the first
full-scale software implementation of the dynamic data
evaluation concept for thermophysical property data. Below
we shall discuss briefly the principal differences between
static and dynamic data evaluation concepts.2,3

Traditionally, critical data evaluation is an extremely time-
and resource-consuming process, which includes extensive
use of manpower in data collection, data mining, analysis,
fitting, etc. Because of this, it must be performed far in
advance of a need within an industrial or scientific applica-
tion. As a result, despite the enormous cost associated with
the critical data-evaluation process, a very significant part
of the existing recommended data has never been used in
any meaningful application. This is because data require-
ments often shift between the initiation and completion of
an evaluation project. In addition, it is quite common that
by the time the critical data-evaluation process for a particular
chemical system or property group is complete (sometimes
after years of data evaluation involving highly skilled data
experts), it must be reinitiated because significant new data
have become available. This type of slow and inflexible
critical data evaluation is defined here as ‘static’. Essentially,
all existing data evaluation projects fall into this category.
Moreover, the static data evaluation process for thermody-
namic data has been unable to provide adequate conceptual
solutions for chemical process design in rapidly developing
fields such as biotechnology, where there is a demand for
simulation of hundreds of new technologies every year.

The new concept of dynamic data evaluation was devel-
oped at NIST/Thermodynamics Research Center (NIST/
TRC).2,3 This concept requires the development of large
electronic databases capable of storing essentially all relevant
experimental data known to date with detailed descriptions

of relevant metadata and uncertainties. The combination of
these electronic databases with artificial intellectual (expert-
system) software, designed to automatically generate recom-
mended data based on available experimental data, leads to
the ability to produce critically evaluated data dynamically
or ‘to order’. This concept contrasts sharply with static critical
data evaluation, which must be initiated far in advance of
need. The dynamic data evaluation process dramatically
reduces the effort and costs associated with anticipating
future needs and keeping static evaluations current.

Implementation of the dynamic data evaluation concept
consists of a number of major tasks:3 (1) design and
development of a comprehensive database system structured
on the principles of physical chemistry and capable of
supporting a large-scale data entry operation for the complete
set of thermophysical (including transport) and thermochemi-
cal properties for chemical systems, including pure com-
pounds, mixtures, and chemical reactions; (2) development
of software tools for automation of the data-entry process
with robust and internally consistent mechanisms for auto-
matic assessments of data uncertainty; (3) design and
development of algorithms and software tools to ensure
quality control at all stages of data entry and analysis; (4)
development of algorithms and computer codes to implement
the stages of the dynamic data-evaluation concept; (5)
development of algorithms to implement, target, and apply
prediction methods depending on the nature of the chemical
system and property, including automatic chemical structure
recognition mechanisms; and (6) development of procedures
allowing generation of output in a format interoperable with
major engineering applications, including commercial simu-
lation engines for chemical-process design.

2. SOURCE ARCHIVAL SYSTEM

Types of “Data” . The term data is very general and is
commonly applied to a wide variety of information. Within

* Corresponding author e-mail: frenkel@boulder.nist.gov.
† Current address: Scientific Information Center, Thornton, CO 80241.

816 J. Chem. Inf. Model.2005,45, 816-838

10.1021/ci050067b This article not subject to U.S. Copyright. Published 2005 by the American Chemical Society
Published on Web 05/18/2005



the context of TDE, it is necessary to define several distinct
types of data, as each plays a specific role within the overall
structure. In a recent article4 we provided working definitions
for the basic types of thermodynamic data; true data
(hypothetical); experimental data; predicted data; and criti-
cally evaluated data. Abbreviated definitions are provided
here, but the reader is referred the original descriptions for
more complete discussion.

True Data (Hypothetical). True data are exact property
values for a system of defined chemical composition in a
specified state. These data are (1) unique and permanent,
(2) independent of any experiment or sample, and (3)
hypothetical concepts with no known values. Because they
are hypothetical, true data values are not represented within
TDE; however, the property values generated by TDE
(critically evaluated data) are approximations to the true
values.

Experimental Data. Experimental data are defined as
those obtained as the result of a particular experiment on a
particular sample by a particular investigator. The feature
that distinguishes experimental data from predicted and
critically evaluated data is the use of a chemical sample
including characterization of its origin and purity. Experi-
mental data only are stored in the TDE-SOURCE archival
system and serve as one of three data sources for processing
by TDE; the others types are predicted data and user-supplied
data.

Predicted Data. Predicted data are defined here as those
obtained through application of a predictive model or method,
such as a particular molecular dynamics, corresponding
states, group contribution method, etc.

Critically Evaluated Data . Like predicted data, there is
no particular sample involved with critically evaluated data.
The feature that distinguishes critically evaluated data from
predicted data is the involvement of the judgment of a data
evaluator or evaluation system, such as TDE. Critically
evaluated data are recommended property values generated
through assessment of available experimental and predicted
data.

TDE-SOURCE Archive of Experimental Data. The
TDE-SOURCE archive of experimental data is a subset of
the TRC SOURCE archive. The TRC SOURCE5,6 was
designed and built as an extensive relational data archival
system for experimental thermophysical and thermochemical
properties reported in the world’s scientific literature. The
SOURCE archive now includes over 1 600 000 numerical
property values and their uncertainties on more than 17 200
pure compounds, 17 000 binary and ternary mixtures, and
4000 reaction systems. Its structure is based principally on
the Gibbs phase rule and complies with all the requirements
necessary to serve as a comprehensive data storage facility
of experimental property data for implementation of the
dynamic data evaluation concept. At present, the rate of
collection of numerical property values is near 300 000 per
year. It is estimated that TRC SOURCE will contain 80%
of the available experimental thermodynamic data for organic
materials by the end of 2006. Version 1.0 of TDE includes
the TDE-SOURCE archive, which contains all experimental
data for pure compounds contained in TRC SOURCE at the
end of 2004.

3. PROCESSING OF EXPERIMENTAL DATA AND
UNCERTAINTY ASSIGNMENTS

The purpose of the TDE software can be summarized as
follows: use experimental data (contained in TDE-SOURCE),
predicted data (generated with algorithms in TDE), plus any
user-supplied data, as input to an expert system to generate
critically evaluated data that are approximations to true data.
The difference between experimental, predicted, or critically
evaluated values and true values can be defined as an error.
The error is never known; however, its mathematical
expectation is never zero. A measure of the quality or
confidence in an experimental, predicted, or critically evalu-
ated value is expressed in terms of the uncertainty, which is
a range of values believed to include the true value with a
certain probability. A distinguishing feature of the TDE
software is that all data types associated with TDE include
estimates of uncertainties. Uncertainties for the experimental
and predicted values form the basis of uncertainties for the
critically evaluated values. It is important to emphasize that
only comprehensive formulations of uncertainties (combined
uncertainties that include uncertainty estimates for all error
sources) provide the full measure of data quality. Only
combined uncertainties with a level of confidence of ap-
proximately 95% are included in TDE. If these are propa-
gated into uncertainties for properties related to industrial
streams,7 this can lead to enormous economic benefits in
the implementation of results of chemical process simula-
tions, particularly for optimal equipment selection. Imple-
mentation of this possibility can change fundamentally
the nature of future chemical process modeling and
design.

To serve as a basis for implementation of the dynamic
data evaluation concept, an archive of experimental property
data must meet several criteria:

• Full traceability from numerical values to bibliographic
sources

• Unambiguous data definitions
• Minimal data transcription errors
• Consistent and reliable assignment of uncertainties
All experimental data stored in the TDE-SOURCE archive

originate from the traditional archival thermodynamic lit-
erature (journal articles, reports, and theses). Data for the
TDE-SOURCE archive are compiled using Guided Data
Capture (GDC) software that was described previously in
this journal.8 Property values are captured with a strictly
hierarchical system based upon rigorous application of
the thermodynamic constraints of the Gibbs phase rule
with full traceability to source documents. Use of the GDC
software ensures that captured data meet the above criteria.

All data selection, capture, and archiving in the TRC
SOURCE data system are completed within the TRC Data
Entry Facility at NIST. Personnel of the NIST/TRC Data
Entry Facility are responsible for managing all contributions
to TRC SOURCE including those from in-house compilers
and from NIST/TRC collaborators worldwide. NIST/TRC
operates a large in-house data-capture effort staffed chiefly
by undergraduate students of chemistry and chemical engi-
neering. Collaborators from outside NIST/TRC are involved
with focused data-capture projects such as those related to
specific compound types, properties, lingual sources, or
contributions to the TRC Tables project.9 In 2003, these
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collaborations were expanded to include authors of articles
published in major peer-reviewed journals, as indicated in
recent announcements in theJournal of Chemical and
Engineering Data,10 The Journal of Chemical Thermo-
dynamics,11 Fluid Phase Equilibria,12 and Thermochimica
Acta.13 All experimental data contributed by authors are
available free of charge from the Web.14

All experimental data in TRC SOURCE, whether captured
in-house or through outside collaborations, are processed and
validated through the same procedures. Target data sources
(articles, reports, etc.) are selected by expert thermodynami-
cists at NIST/TRC. All data and relevant metadata are
captured with the GDC software. Senior NIST/TRC person-
nel review the collected information for completeness and
general validity. The information is then archived in the TRC
SOURCE data system. Once archived, subjecting each
compound for which new data were added to the critical
evaluation process of TDE provides an additional strict
validity check. Large deviations between experimental and
recommended values generated by TDE are carefully re-
viewed for typographical, compound identification, and other
types of common errors. These procedures constitute the
NIST/TRC data quality assurance program described previ-
ously.15

A key application of the information gathered with GDC
is generation of an estimated combined standard uncertainty
for each numerical property value. The expression of
uncertainty requires clear definition of a variety of quantities
and terms. Definitions and descriptions of all quantities
related to the expression of uncertainty in this paper conform
to theGuide to the Expression of Uncertainty in Measure-
ment, ISO (International Organization for Standardization),
October, 1993.16 Reference 16 is commonly referred to by
its abbreviation; the GUM. Additional information and
related references can be found in ref 17. The recommenda-
tions have been summarized in Guidelines for the Evaluation
and Expression of Uncertainty in NIST Measurement
Results,18 which is available via free download from the
Internet (http://physics.nist.gov/cuu/).

Recently, we summarized the recommendations of the
GUM with particular application to the reporting of experi-
mental thermodynamic property data.17 The most compre-
hensive expressions of uncertainty are the Combined Stan-
dard Uncertaintyux and the Combined Expanded Uncertainty
Ux. The Combined Standard Uncertaintyux can be repre-
sented as a mathematical expression

where the symbolsxi represent various contributions to the
uncertainty that are propagated to estimateux. For example,
the estimated uncertainty for a temperature value might be
a function of the method and traceability of the sensor
calibration, the instrument used to read its response, estimated
gradients in the apparatus, effects of thermal inertia, and so
forth. A well-designed experiment (i.e., one that includes
the identification and control of the largest contributionsxi

in eq 1 through determination of values of∂ux/∂xi)
will improve the quality of the uncertainty estimates, but
some scientific judgment is always involved in estimating
ux.

The combined standard uncertaintyux represents one
standard deviation and is related to the combined expanded
uncertaintyUx through the expression

wherekx is the coverage factor. The coverage factor is a
numerical multiplier used to expand the combined standard
uncertaintyux with a specified level of confidence (usually
95%), which is an estimate of the probability that the
measurand is within a specified range. The measurand is
sometimes referred to as the ‘true value’, the exact value of
which is unknowable, as noted earlier.

Recently, we reviewed practices in the expression of
uncertainty in the experimental literature for thermodynamic
property measurements with determinations of the critical
temperatureTc for pure compounds used as a case study.19

In that article it was shown that although gradual and
continuous progress has been made in the reporting of
uncertainty information, comprehensive uncertainty analyses
remain rare, particularly with regard to consideration of
contributions arising from sample impurities. Examples were
provided of dramatic underreporting of uncertainty magni-
tudes due to failure to consider this important component.
In the time period since 1990, approximately 42% of the
articles reporting experimentalTc values listed only some
type of precision information rather than a comprehensive
combined uncertainty. Information on precision provides only
a lower bound for the combined uncertainty and is of limited
value to data evaluators and application engineers. Because
reported uncertainties are so often poorly defined, a method
for generation of independent estimates for combined
uncertainties was developed at NIST/TRC.

The scheme developed by NIST/TRC for estimation of
the combined standard uncertaintyucombfor a given property
p as a function of constraintsc and variablesV is based upon
a summation of terms:

The partial derivatives (∂p/∂c)V and (∂p/∂V)c are calculated
approximately based upon the reported property values, if
possible, or are estimated based upon approximate models
for the property. The summations are over all constraints
and variables. The standard uncertainty for the propertyup

is rarely provided in a document and is estimated at NIST/
TRC based upon the following general relationship:

This relationship involves two major contributions toup:
uncertainties associated with the experimental method and
those associated with the sample.

The termumethodis a default contribution toup and is based
on the particular experimental method only. For example, a
heat capacityCsat,mdetermined with high-precision adiabatic
calorimetry might have a default value forumethodof 0.002‚
Csat,m, while the same property determined with a differential-
scanning calorimeter might have a default value 10 times
larger. Some details related to particular methods are also
considered, such as the method of calibration for a vibrating-

ux ) f(x1, x2, x3, ...) (1)

Ux ) ux ‚ kx (2)

ucomb
2 ) up

2 + Σ{uc(∂p/∂c)V}
2 + Σ{uV(∂p/∂V)c}

2 (3)

up
2 ) {umethod

2 + Σ(fm‚umethod-details
2)} +

{usample
2 + Σ(fs‚usample-details

2)} (4)
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tube densimeter. These adjustments are indicated asumethod-details

in eq 4 and can increase or decreaseup based on the value
of fm, which is 1 or-1.

The termusamplein eq 4 represents a default contribution
to up related directly to the purity of the sample. Additional
contributions toup related to the sample are indicated as
usample-details in eq 4. The magnitude ofusample-details is a
function of several items, including the property, special
characteristics of the material (e.g., thermal stability or
hygroscopicity), and the experimental conditions (e.g., pres-
sure or temperature range). This formulation is required to
take into account the fact that impurities do not affect all
properties or experimental methods to the same extent.

Values for the standard uncertaintiesuc anduV (andup, if
appropriate) are taken from the original document, if
provided and supported in the text. Default values are
substituted for those not provided. Default values are based
upon the general method used and are larger than those
reported typically in the literature for the method. Incomplete
reporting or the absence of this information in a document
is considered indicative of the general quality of the work.
Consequently, results reported with incomplete uncertainty
descriptions are assigned uncertainties at NIST/TRC, which
are commonly larger than those with well-supported esti-
mates.

If estimates ofucomb are provided in the document, these
are checked against the estimates calculated with eq 4. Large
discrepancies are reviewed carefully and can form the basis
for modification of default values. Because various indicators
of precision (repeatabilities, deviations from fitted curves,
etc.) provide only a lower limit for any uncertainty estimate,
these are considered only if they are larger than the default
uncertainties for the particular variable, constraint, or prop-
erty.

The approach described here for the estimation of com-
bined standard uncertainties provides the basis for consistent
evaluations of the numerous data types encountered. This
brief overview demonstrates that even approximate estimates
of ucomb require careful consideration of a wide variety of
contributions to the uncertainty. All numerical property
values used in the TDE evaluation process are accompanied
by uncertainties expressed as expanded combined uncertain-
ties (level of confidence≈ 95%), where independent
variables and constraints (if any) are considered exact, and
all uncertainty contributions are propagated to the property.
Uncertainties are used for relative weighting of data points
in regression procedures and for propagation to uncertainties
for the program output: critically evaluated property data.
In the absence of uncertainty information (e.g., if a user
supplies data without uncertainties), the program assigns
conservative default uncertainties based on the identity of
the property.

4. SOFTWARE ARCHITECTURE

Property Groups or ‘Blocks’. The properties that are
evaluated dynamically within this first version of the TDE
software are thermophysical properties of pure compounds.
The focus is primarily on organic compounds containing the
elements C, H, N, O, S, F, Cl, Br, I and to a lesser degree
Si. Future developments will include expansions to include
properties of reactions and mixtures, including phase equi-
libria.

The complete list of properties considered within TDE is
given in Table 1. The properties are classified into four
property groups or blocks: phase diagram properties, volu-
metric properties, energy properties, and other properties.
Table 2 lists all properties that are critically evaluated by
TDE. The list in Table 2 is shorter because some properties
listed in Table 1 are closely related through simple algebraic
calculations (such as molar volume and specific density) or
through reversal of properties and variables (such as boiling
temperatures and vapor pressures). The combining of closely

Table 1. Blocks of Related Properties Used as Source Data for
Critical Evaluation by the TDE Software

block name properties

phase diagram block triple point temperature
critical temperature
normal melting temperature
boiling temperature
normal boiling temperature
phase boundary pressurea

critical pressure
volumetric block density

molar density
specific volume
molar volume
compressibility factor
second virial coefficient
third virial coefficient
critical density
critical volume
critical compressibility

energy block enthalpy of phase transition
cryoscopic constant
enthalpy of vaporization or sublimation
heat capacity at constant pressure
heat capacity at saturation pressure
heat capacity at constant volume
speed of sound

other property block refractive index
NaD-refractive index
viscosity
kinematic viscosity
fluidity
surface tension
thermal conductivity

a The property phase boundary pressure includes pressures associated
with all phase boundaries including vapor pressures, sublimation
pressures, crystal-liquid boundary pressures, and crystal-crystal bound-
ary pressures.

Table 2. List of All Properties that Are Critically Evaluated by
TDE

block name properties

phase diagram block triple point temperature
critical temperature
phase boundary pressure (all phase boundaries)

volumetric block single-phase density
saturated density
second virial coefficient
critical density

energy block enthalpy of phase transition
enthalpy of vaporization or sublimation
heat capacity at constant pressure (ideal gas)
heat capacity at saturation pressure
speed of sound

other property block refractive index
viscosity
surface tension
thermal conductivity
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related properties into single properties is termed normaliza-
tion and is described in the next section. After normalization,
the properties within a block are evaluated together with
subsequent enforcement of interblock property consistency,
as described later.

Relationships between the property blocks are complex,
but several generalizations can be made. The phase-diagram
block is used to delineate the phase regions (crystal forms,
liquid, and gas) and their boundaries (Figure 1). Properties
in the other three blocks are associated with single phases,
phase boundaries, or special points (triple or critical) defined
by the phase diagram. The phase-diagram, volumetric, and
energy blocks are tied by thermodynamic consistency condi-
tions. That is, properties within the various blocks are related
through mathematical thermodynamic identities. After initial
evaluation within a block, enforcement of thermodynamic
consistency conditions is one of the most important features
of TDE and is described later in this paper. The fourth
property block (other) has no influence on the first three
blocks and is evaluated last because properties evaluated in
the first three blocks are used for processing the properties
in this block.

Representation of Properties in TDE. The number of
variablesF associated with a thermodynamic property is
defined by the well-known Gibbs phase rule. For pure
compounds, this rule reduces to the simple formF ) 3 -
nPhase, where nPhaseis the number of phases present.
Consequently, properties of pure compounds are (1) single
valued, if they are associated with triple points; (2) functions
of one variable, if they are associated with phase boundaries
(or are limiting values such as virial coefficients), or (3)
functions of two variables, if they are single-phase properties.
Certain properties, which are not thermodynamic, may have
more independent variables, such as refractive index, which
is also a function of wavelength. All properties (other than
those associated with triple points; i.e., three-phase equilib-

rium) are represented by defined equations with specified
ranges for the independent variables.

There are three general methods for representation of
evaluated properties that are based on (1) an equation of state
(EOS), (2) separate equations for particular subsets of related
properties, and (3) separate equations for all properties. The
second approach is a hybrid of the first and third and is
impractical for application in TDE because of the wide
variety of properties and data scenarios addressed. The
advantage of an EOS approach is that representation and
intrinsic consistency of all thermodynamic properties with
a single equation is inherent in the method.

There are myriads of alternative EOS formulations in the
thermodynamic literature. These are mostly empirical in
nature and are often applicable to specific families of
compounds with, at best, a tenuous connection of parameters
to physical quantities. A recent advanced implementation of
the EOS approach is that based on the Helmholtz energy.(20)

Widespread application of this advanced EOS is severely
limited by the lack of required extensive high-quality
experimental data for properties spanning the gas-liquid
saturation lines and single-phase (gas, liquid, and supercritical
fluid) regions. In practice, advanced EOS representations are
constructed for data that were evaluated previously. Conse-
quently, the advanced EOS approach is suitable for a limited
number (≈100) of extensively studied compounds. Less-
exacting ‘cubic’ EOS formulations have been developed for
approximate property representations; however, these are
incapable of representation of properties close to the limits
of experimental uncertainty, making them generally unsuit-
able for TDE.

A key goal in the development of TDE was good
representation of property values for a wide variety of data
scenarios from extensive data for all phases and boundaries
to the common case of limited or low-quality experimental
data. Application of the second general method for property

Figure 1. Phase diagram for a typical compound. The specific example is the phase diagram for naphthalene. The critical point, a triple
point, and three subcritical phases (crystal, liquid, and gas) are indicated.
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representation (separate equations relating property subsets)
was not chosen because such equations are effective for only
very specific data scenarios. To achieve the goal of ap-
plicability to the widest array of data scenarios, representation
of all properties by separate equations was chosen in
development of TDE. This approach requires explicit ap-
plication of thermodynamic consistency conditions during
the evaluation process and is therefore very challenging
mathematically. However, this method of representation has
the important advantage that additional equations can be used
to constrain derived property curves to only ‘valid’ shapes,
thus increasing the quality of the evaluation in the event of
an inadvertently bad data source.

Data Sources. Data used in the TDE evaluation process
are experimental data stored in the TDE-SOURCE database,
predicted data for filling gaps in experimental data, and
property values entered by the user. This last data type allows
inclusion of proprietary or other data not available with the
TDE-SOURCE program database. User data are processed
in the same way as that of the database. Data predictions in
the first version of TDE (Version 1.0) are based on group-
contribution and corresponding-states methods. Methods and
algorithms for data prediction are discussed later in section
6.

Data used for evaluation (source data) within TDE are
organized in a hierarchy for a particular compound. This
organization allows easy display of traceability to the
prediction method or bibliographic source for any numerical
value. For a given compound, data are organized as data
sets within properties and data points within data sets. Data
sets join data from one literature source, for one sample,
and for each experimental method. Data generated with a
particular prediction method are also combined into a data
set. Data points are property values with accompanying
information: values of independent variables, a numerical
property value, and an estimated combined uncertainty.
Properties are distinguished by name, independent variables,
and the identities of all phases present. For data involving
two phases, the phase associated with the property (the
primary phase) is identified. For example, densities on the
saturation line are identified as those of the gas (in equilib-
rium with the liquid) or those of the liquid (in equilibrium
with the gas). The provenance of every data point used in
TDE can be traced to its source, whether it is a bibliographic
citation, prediction method, or user-supplied data.

Data Normalization. Certain properties are commonly
expressed in different, but closely related, formulations. For
example, density can be expressed as specific density (mass/
volume), molar density (moles/volume), specific volume
(volume/mass), molar volume (volume/mole), or compress-
ibility factor. In these cases, it is impractical to apply separate
equations for each property with common parameters.
Instead, the property data are normalized, i.e., reduced to a
single property selected for output representation. Normaliza-
tion is trivial, if it does not require data beyond the molecular
mass and fundamental physical constants, such as those for
density listed above. Nontrivial normalization requires other
evaluated data. For example, conversion of kinematic viscos-
ity into dynamic viscosity requires an evaluated density at
the same conditions of temperature and pressure. Table 3
lists all of the normalizations carried out in TDE together
with the properties required in the case of nontrivial
normalizations. The initial and normalized properties are
listed. Critical pressures and critical densities involve a
special type of normalization in which the properties are
converted to saturation properties at the critical temperature.
This provides consistency between the saturation line and
evaluated critical properties. Single-phase and saturated phase
properties are described by separate equations in TDE;
however, both kinds are used near phase boundaries as source
data for the equations.

Evaluation Sequence (Overall).The sequence of the
overall evaluation process is shown in Figure 2. Once the
user selects a compound (step 1), there are three major steps
in the process. The first major step has three substeps and
involves user participation. The substeps are (1) compound
selection, (2) data gathering from the TDE-SOURCE data-
base (and from the user), and (3) optional data review by
the user, as shown in Figure 2. The second major step has
four substeps and does not involve user participation. The
four substeps (as numbered in Figure 2) are (4) trivial
normalization, (5) completion of the initial critical evaluation
process within the first three blocks, (6) enforcement of
interblock thermodynamic consistency, and (7) completion
of the critical evaluation process for the final block properties
not involved in interblock consistency enforcement. The third
major step again involves optional user involvement and has
three substeps. The three substeps (as numbered in Figure
2) are (8) review of results including various deviation plots
for all source data, (9) selection of alternative fitting

Table 3. Normalization Procedures Used in TDE

property normalized property
information required

for normalization comment

normal melting temperature triple point temperatureTtp none increased uncertainty
enthalpy of fusion in air enthalpy of fusion atTtp none increased uncertainty
cryoscopic constant enthalpy of fusion atTtp Ttp

normal boiling temperature and boiling
temperature at pressurep

vapor pressure,p approximate dp/dT for uncertainty
transformation

triple point pressure p(Ttp) Ttp

critical pressurepc p(Tc) critical temperatureTc

critical compressibility critical density Tc, pc, molar mass
critical densityFc F(Tc) Tc

specific volume density
molar volume, molar density, compressibility

factor
density molar mass

virial coefficients density none
fluidity dynamic viscosity none
kinematic viscosity dynamic viscosity density
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equations, and (10) output in text and ThermoML format.
Because the foundation of TDE is enforcement of thermo-
dynamic consistency, all properties are always evaluated to
the extent possible. This is why there is no step involving
property selection by the user before evaluation.

The sequence in which the four property blocks are
evaluated (as well as the sequence of property evaluations
within each block) is critical. Each block requires data
evaluated in the previous block for evaluation of the
properties it contains. Interblock consistency is enforced
through iterative processes described later. The fourth
property block (other) is dependent on the first three but is
not involved in consistency enforcement, which is why it is
last in the sequence.

Although the user is not directly involved in the automated
critical evaluation process, there are three methods by which
the user can affect the results obtained: (1) addition of data,
(2) forced rejection of data, and (3) modification of estimated
experimental uncertainties. These are completed ahead of
the automated evaluation in the first major step at the top of
Figure 2. The user has extensive control over the format of
the program output in the third major step (bottom of Figure

2) including selection of alternative equations for data
representation (i.e., equations other than those selected
automatically by NIST ThermoData Engine) and specifica-
tion of ranges for independent variables.

Evaluation Sequence (Single Property).Although the
evaluation process for each property often includes some
unique aspects, a general sequence can be described that
demonstrates some key functions of the program. The
following paragraphs describe each step in this general
sequence, which is shown in Figure 3.

The first step, normalization, was described earlier. Once
initial values for properties in the phase-diagram block are
evaluated, phase adjustment for subsequent single-phase
properties is possible (step 2 of Figure 3). Phase adjustment
involves redistribution of data between phases and rejection
of data with invalid phase specifications. Phases supported
by TDE are gas (which includes the supercritical region),
liquid, and various condensed phases, such as crystals of
different types, glasses, and liquid crystals. Within the TDE-
SOURCE data, the phase specification “fluid” is often
applied to the gas, single-phase liquid, and supercritical
regions. This is necessary because the phase regions are not

Figure 2. Sequence of the overall evaluation process.
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defined until the phase boundaries are determined. During
phase adjustment, all single-phase data are distributed
between the gas and liquid phases. All values withT > Tc

or p < psat are associated with gas. All other fluid-phase
data are considered liquid. For saturated properties, data
outside the defined extent of the phase boundaries are
rejected and not used in evaluation. For example, all vapor
pressure values withT greater than the evaluatedTc are
rejected.

In step 3 of Figure 3, predicted values and their estimated
uncertainties are generated where possible. Prediction meth-
ods and their selection are described later in section 6. The
predicted values are then used in step 4 (Figure 3) for rough
validation of the experimental data. Values deviating from
the predictions by more than triple the conservatively
estimated uncertainties for the predictions are rejected.
Uncertainties for the predictions are relatively large, so this
validation step is primarily to catch large errors that are
typically typographical either from the original source
documents or generated during data processing.

Flexible and automated model selection (steps 5-8 of
Figure 3) is a key feature of the TDE software and is based
on the extent and quality of the experimental data available.
For example, the 5-parameter Wagner equation21 is selected
for vapor pressure representation, if the critical temperature
is available; otherwise, an expansion of ln(p) vsT is selected.
Scattering analysis (step 6 of Figure 3) is applied to each
data set (typically data from a particular bibliographic
source). This analysis checks for large deviations within a
particular data set and checks the validity of the estimated
experimental uncertainties by fitting the selected equation

with an appropriate number of terms to all of the available
data and determining both the deviations for individual data
points and the overall scattering. This information is used
in statistical weighting of data, as described later. In step 7
(Regression), the number of terms is selected (if supported
by the mathematical form of the equation), and the equation
parameters are fit to the experimental data. Linear and
nonlinear (Levenberg-Marquardt, simplex, Powell) least-
squares fitting methods are employed by TDE.22 After fitting,
data that show relatively large deviations are detected and
rejected through the smart rejection procedure (step 8 of
Figure 3). This procedure is similar to that described by
Wilhoit et al.23 The tolerance levelΓi for rejection is based
on the data quality in the neighborhood of each data point

whereΓi is the tolerance forith data point,f is the tolerance
factor (usually 3),wj is the weight of thejth data point,∆j

is the square of the deviation of thejth data point from the
equation,X is the independent variable (eq 5 is shown for
the case of a property as a function of one variable), andk
is the propagation distance parameter (usually 10-20 K for
temperature as an independent variable). Parameters control-
ling rejection aref and k and the weightsw. The ith data
point is rejected if the square of its deviation from the
equation exceeds theΓi criterion. Settingf ) 3 andk ) ∞
reduces the equation to the conventional 3σ-rejection. Use
of the smart rejection procedure increases the tolerance in
regions with lower data quality. Figure 4 illustrates the results
of smart rejection with the experimental vapor pressures of
propane as an example. Extensive, high-quality data are
available forT > 175 K, but only data with relatively large
uncertainties are available between 175 K andTtp (near 85
K). Data points shown in gray are outside the tolerance limits.

After step 8 of Figure 3, if any data were rejected, steps
5-8 are repeated (with the rejected data removed). This cycle
is repeated until no further data are rejected. As data are
rejected, the number of parameters or even the selected
equation may be changed during the cycle, depending on
the property. In step 10 of Figure 3, the resulting equation
is tested for validity of shape using criteria individual to each
property and equation. The equation is also tested to
determine whether it adequately describes the experimental
data. If deviations exceed 10 times the estimated uncertainty
of the experimental data points, the equation is rejected. If
the equation shape is invalid or does not adequately describe
the experimental data, they are substituted by predicted
values (step 9 of Figure 3).

Application of Predictions. As noted earlier, predictions
are used for validation of source data and for filling gaps in
experimental data. The prediction methods used in the first
release of TDE are group contribution (GC), corresponding-
states (CS), and combined (GC-CS) methods. Details related
to automated selection of prediction methods are described
later in section 6. If multiple prediction methods are available
for a given property, the most reliable (lowest estimated
uncertainty) method is chosen. This approach allows simple
addition of new or higher-level methods, such as those based
on molecular dynamics or various types of ab initio calcula-
tions. Unfortunately, it is generally the case that higher-level

Figure 3. General evaluation sequence for a property.

Γi ) f ‚ ∑
j

wj∆j ‚e- |Xj-Xi|/k (5)
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methods have been only poorly validated, resulting in
property values with ill-determined uncertainties.

An example of the use of property prediction is shown in
Figure 5. In step 1 of Figure 5, the normal boiling pointTbp

and enthalpy of vaporization at that temperature∆vapH(Tbp)
are predicted with the molecular structure only (a group-
contribution method) and are used for validation of experi-
mental vapor pressurespsat (step 2). A value ofTbp (now
based on experimental data) is derived from the validated

psat data (step 3) and is used in prediction of the critical
temperatureTc (step 4). The predictedTc is then used for
rough validation of experimentalTc values and the evaluated
Tc is generated (step 5). The evaluatedTc is used for critical
pressurepc prediction (step 6), and any experimentalpc data
are validated (step 7). Predictedpsatvalues are generated from
Tbp, Tc, andpc (step 8). Finally,pc (converted topsat at Tc) is
processed together with experimental and predicted (if
needed) vapor pressure data to generate the evaluated vapor-

Figure 4. Percentage deviations from the fitted Wagner equation21 for experimental vapor pressures for propane. Data points in gray were
rejected with the smart rejection procedure that includes consideration of local data quality.

Figure 5. Use of predictions for the normal boiling temperatureTbp, enthalpy of vaporization at the normal boiling temperature∆vapH(Tbp),
the critical temperatureTc, the critical pressurepc, and vapor pressurepsat in evaluation of vapor pressure. Most of the prediction methods
used are of the group-contribution type and require the molecular structure.
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pressure equation (step 9). Liquid and ideal-gas heat capaci-
ties, if available, are used to constrain extrapolation ofpsat

down to the triple point temperatureTtp.
The value ofTbp can be significantly changed during the

vapor pressure evaluation, if the initially derived value (step
3 of Figure 5) included previously undetected large errors
in the source data. In those cases, steps 3-9 are iterated until
convergence is reached. An example of the effect of iterations
is illustrated in Figure 6. The example shows experimental
psat data for 1-tridecanol that includes an anomalously low
value ofTbp (probably due to undetected sample decomposi-
tion). Figure 6a shows the results after completion of step 3
of Figure 5. The shape of the curve of ln(psat) against 1/T

shown in Figure 6a is anomalous, and results from the
experimentalTbp being too low. Use of this value in the vapor
pressure prediction (step 8 of Figure 5) yields values that
are inconsistent with all experimental data, as shown in
Figure 6b. The experimentalTbp value is rejected, and a new
Tbp is generated from the vapor pressures at lower temper-
ature. The final vapor pressure curve is shown in Figure 6c,
where the rejectedTbp value is apparent.

Default and Alternative Equations. The modular struc-
ture of TDE allows flexibility in equation selection for each
property. For each equation a class is defined that provides
required functionality to TDE for calculation of property
values and their derivatives by state variables and equation
parameters, determining the number of parameters, assigning
statistical weights to source data, and assessing validity of
parameters. Models (i.e., equations) can be added or sub-
stituted without changes to the evaluation code. The ‘default’
equations are the set of equations selected by TDE for the
properties during the evaluation process. If multiple equations
are available, TDE selects the most suitable or better-fitting
equation. For example, if the critical temperature is available,
the Wagner equation21 is selected for vapor pressure repre-
sentation; otherwise, another expansion function is used. The
complete list of equations supported by TDE is provided in
the Supporting Information.

Alternative equations are defined as those needed by users
but not selected by TDE as default equations in the evaluation
process. The user can request refitting evaluated data by any
alternative equation. The alternative equations are fit to
critically evaluated property values generated by TDE. The
alternative equations are not used in the evaluation process.
TDE supports three sets of alternative equations that are
commonly used in engineering applications: Yaws,24

DIPPR,25 and PPDS26 equations as well as some other
common equations such as the Antoine equation for vapor
pressures.

Statistical Weighting of Data. Statistical weights are used
for scaling the contribution of each data point to the objective
function22 during fitting and in generation of uncertainties
for evaluated values. Generally, weights are based on the
reciprocal square of the uncertainties of the property values.
As described earlier in section 3, uncertainties for experi-
mental property values obtained from the archival literature
are estimated at NIST/TRC based upon information provided
by the article authors for metadata, which is often incomplete.
The adjustments described here are intended to further refine
the weighting factors in the data evaluation process.

The statistical weightw for a data point used in fitting is
calculated by the equation

where U is the source data uncertainty (the expanded
combined uncertainty estimated as described in section 3),
δ is the deviation from an appropriate equation fitted to the
data set,s is a data set quality factor (average scattering from
the equation fitting the data set), andS are adjustments for
data sets comprised of smoothed values or values calculated
by equations. The uncertaintyU is revised if the original
uncertainty is missing (possibly with user data) or is
unrealistically small. Reasonable defaults are used in both
cases for all properties.δ and s contributions characterize

Figure 6. The top plot (a) shows the results after completion of
step 3 of Figure 5 with an anomalously low experimentalTbp value
included. Plot (b) shows that vapor pressures predicted (step 8 of
Figure 5) with this anomalous value are inconsistent with all other
values. In plot (c), the anomalousTbp value was rejected and
replaced with one generated from the vapor pressures at lower
temperatures with much improved consistency apparent.

w ) (U2 + δ2 + s2 + S2)-1 (6)
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data set quality and are significant when the scattering within
the data set exceeds the stated uncertaintiesU. The S
contribution decreases weights for smoothed data sets
because smoothed values show little scattering by definition.
This scattering does not reflect the quality of the underlying
experimental data. We assume that the best reported data
are available as original experimental values. For single-value
properties, such as triple point temperature,w reduces to
1/U2.

In certain situations, property values are transformed before
fitting for making equations linear with respect to the
parameters and allowing direct computation of the param-
eters. For example, vapor pressure is commonly fitted with
a logarithmic equation form, as is saturated density, when
fitted with the Rackett equation. In such cases, all contribu-
tions tow are transformed in the way the uncertainty would
undergo during property transformation. When the transfor-
mation is logarithmic, uncertainties and deviations contribute
to w as relative (divided by the property value) rather than
absolute values. Weights are dynamically recalculated before
each fitting procedure.

Data Quality Assurance for TDE-SOURCE Data.
Automated data processing may give meaningless results if
erroneous data are not detected and corrected or discarded.
Such data are unavoidably present in any data source to some
extent. TDE-SOURCE database data entry tools (Guided
Data Capture)8,27 ensure that all information entered is
correctly defined and completely specified in terms of the
Gibbs phase rule (phases, independent variables). The only
remaining kinds of errors are numerical. Regardless of the
source of erroneous values, whether it is a poorly designed
experiment, typographical errors in publications, or misi-
dentified phases or substances, three types of errors can be
recognized:15 (1) invalid property values (e.g., negative
temperatures; subcritical gas densities corresponding toZ >
1; single-phase liquid densities lower than the saturated
density at the same temperature), (2) out-of-range variable
values (e.g., saturated vapor pressure reported forT > Tc;
single-phase liquid density at a pressure lower than the
saturated vapor pressure), and (3) large deviations from the
fitting equation, taking into account the local data quality
using eq 5.

Invalid values are detected before fitting each property
based on the information available at that time in the
evaluation process. Phase diagram properties are processed
first, which allows use of the range of existence for each
phase to invalidate any data outside the appropriate region.
Property values then undergo additional validation against
predicted values using the methods listed in Table 4, plus
the group-contribution method of Ruzicka and Domalski28

for values ofCsat(liquid) and the Peng-Robinson equation
of state29 for gas-phase densities.

Any data, even high-quality data, may be harmful in the
evaluation process, if the uncertainties associated with them
are excessively small. The smart rejection technique de-
scribed earlier is not effective in such cases. (Excessively
small ‘uncertainties’ are common in the archival literature
because of incomplete assessment of uncertainty or ambigu-
ous metadata, as described earlier in section 3. This results
commonly in highly inconsistent property data.) The presence
of data inconsistency or inadequate uncertainties for a data
set can be revealed when a fitting equation has an invalid

shape (validity criteria are discussed below) or fails to fit
the data within the estimated uncertainties. Sometimes, the
question of which data are incorrect can be resolved during
the enforcement of thermodynamic consistency between
properties. Once data inconsistency is detected, the algorithm
attempts to resolve the problem by revising relative weights
of the data sets. The basis for locating a problem data set is
deviations from a rough fitting equation that ensures a valid
shape (e.g., the Rackett equation for saturated liquid density)
or the fact that elimination of one data set resolves the
inconsistency. If all attempts to resolve inconsistency are
unsuccessful, the experimental data are substituted by
predicted values.

Uncertainties. Uncertainties are calculated based on the
covariance method for variable dependent properties. The
covariance matrix for an equation is obtained by multiplica-
tion of the reciprocal least-squares matrix built from sums
of contributing data points (rather than average values) by
the sum of the squares of the adjusted uncertaintiesUA of
data points, described below. When the least-squares task is
nonlinear, the least-squares matrix is taken from the last
iteration. If the least-squares matrix combines more than one
property, an appropriate fragment of the reciprocal matrix
may be taken.

Adjusted uncertaintiesUA are calculated through combina-
tion of the estimated TDE-SOURCE data uncertaintiesU
and curve deviationsδ:

Curve deviations reflect both data errors and model limita-
tions to some extent. However, it would be incorrect to rely
entirely on curve deviations, which can be very small for
smoothed data and cannot reflect nonrandom errors. Uncer-
tainties of evaluated property valuesU calculated with TDE
equations are calculated by the conventional formula

Table 4. Major Properties Currently Predicted by TDE

property methods typea

normal boiling
temperature

JR,40b CG,41c MP42d GC

critical temperature JR,b CG,c MP,d WJ43e GC
critical pressure JR,b CG,c MP,d WJe GC
critical density JR,b CG,c MPd GC
saturated liquid density Yamada and Gunn44 CS
ideal gas heat capacity JRb, f GC
liquid heat capacity Bondi45 CS
second virial coeffs Xiang46 CS
third virial coeffs Liu and Xiang47

Orbey and Vera48
CS

vapor pressure Ambrose and Walton49 CS
gas viscosity Lucas50 CS
liquid viscosity Sastri and Rao51 GC and CS
gas thermal conductivity Chung52 CS
liquid thermal

conductivity
Chung53 CS

a GC) group contribution; CS) corresponding states.b Joback and
Reid. c Constantinou and Ganid Marrero and Pardillo.e Wilson and
Jasperson.f Method of Joback and Reid with group parameters reevalu-
ated at NIST/TRC.

UA
2 ) 1/2‚(U

2 + δ2) (7)

U ) (∑
i)1

N

∑
j)1

N

Cij ‚
∂F

∂pi

‚
∂F

∂pj
)1/2

(8)
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where Cij are elements of the covariance matrix,N is
the number of parameters, and∂F/∂p are the first deriva-
tives of the property with respect to the equation param-
eters.

During construction of a covariance matrix, some adjust-
ments to the formal procedure are applied. If the only source
of errors is random scattering with a normal distribution,
and the model is fully adequate, the covariance matrix
elements are divided by the number of data points reduced
by the number of parameters in order to reflect the dispersion
of the mean values, and the Student factor (usually corre-
sponding to a 95% level of confidence) is applied to the
calculated uncertainties. The true distribution of errors is
usually far from normal, and all empirical equations are
approximate by definition. To describe uncertainties more
adequately, some restrictions are made through application
of an effective number of data points based on the statistical
weight used in fitting, i.e., the weights of all selected data
points are summed and divided by the largest weight. Then,
the effective number of data points is restricted to not greater
than 25, and the Student coefficient is applied. This procedure
is also used for uncertainty assessment of single-valued
properties, such as triple-pointTtp and critical temperatures
Tc. As noted earlier, critical pressurespc and critical densities
Fc are treated as part of the saturation curves and not as
single-valued properties. Uncertainties for these are calcu-
lated from the covariance matrices for the saturation equa-
tions.

The covariance matrix is a function of the mathematical
form of an equation, source data distribution, and the general
deviation of the data from the equation. If the number of
parameters in an equation is small, the calculated uncertain-
ties are nearly uniform in the range of the independent
variables and tend to be underestimated. If the number of
parameters is large, the calculated uncertainties are exces-
sively small in the middle and unrealistically high at the
edges. To counteract this effect, TDE covariance matrices
are generally reduced to rank 3 or 4. This is done after fitting
by setting some of the parameters as constants with values
obtained in the unrestricted fit (and covariance terms equal
to zero) and recalculating the covariance for the remaining
parameters. In polynomial-like equations, parameters cor-
responding to terms of higher power are fixed for the
covariance adjustment.

Quality, Validity, and Success of Evaluation. At the
end of the evaluation process additional checks are applied
to reduce the probability of seriously erroneous results
caused by errors in the source data or highly unusual data
scenarios.

The quality of fit Q represents how well an equation fits
the source data. It is calculated with the formula

whereN is the number of data points,wi are their statistical
weights,Ui are estimated source data uncertainties, andδi

are deviations from the curve. IfQ is significantly greater
than 1, the data are not adequately fit by the equation, and
the evaluation may be of no value. Substitution by predicted
values is usually done by TDE in such cases.

A second parameter that is used to check the validity of
an evaluation is the relative assessed uncertaintyR

where V is the evaluated property value, andU is the
evaluated uncertainty. IfR is too high, depending on the
property, it may indicate that the evaluation is not valid.
LargeR may be reasonable for evaluated vapor pressures,
where an order-of-magnitude value might be useful but are
less acceptable for densities or temperatures of phase
transitions.

A third test for each property involving independent
variables involves tests for validity of the curve shape. There
are individual validity criteria for essentially every property
evaluated by TDE. For example, first and second derivatives
(with respect to temperature) of saturated vapor pressure
curves must be positive, and the second derivative of the
saturated liquid density curves must be negative (also, the
first derivative for essentially all compounds except water).
Some of the curve-shape criteria are strict, and if not satisfied,
the equation is invalidated and substituted with predicted
values. Other, less strict, criteria can be expressed numeri-
cally and are used for comparative assessment of different
equations or parameter sets.

Through application of these three criteria, TDE gives
evaluated results consistent with available source data,
predictions, and physical principles. In the worst case, when
the source data are internally inconsistent or do not pass
validation, the uncertainty of the evaluated values is deter-
mined by that of the prediction methods used, but the
evaluation basis is always clear. A key goal in development
of TDE was creation of a system for critical evaluation of
property data that could act autonomously. In the absence
of significant data errors, decision making is relatively
straightforward and involves selection of default equations
(i.e., model selection), number of parameters, application of
predictions for filling data gaps, and detection of low-quality
data points for rejection. To ensure that the results of an
evaluation would not be highly erroneous, the program was
developed to not rely on perfect source data, and practically
every major operation such as evaluation of a property or
consistency enforcement includes assessments of success and
validity checks for derived equations. If a failure is detected,
a variety of remedial actions are tried, including reduction
in the number of equation parameters, change of the selected
default equation, additional source data validation, rejection
of inconsistent data sets, rollback of consistency enforcement,
substitution of property data by prediction, or, in the worst
case, complete exclusion of a property from the evaluation
results.

Program Structure and Interface. The program core is
written in the C++ language and, therefore, is highly
portable to different platforms. It is based on the C++ class
concept. The program is made up of a user interface and
computational core that includes the Compound, Prediction,
Property, and Model classes. The central class is the
Compound class, which holds all information about a
particular compound and supports operations for loading
compound source data from TDE-SOURCE, performing
evaluations and accessing the primary (default equations and
numerical values) and secondary (alternative equations)

Q ) ∑
i)1

N {wi‚(δi

Ui
)2}/∑

i)1

N

wi (9)

R ) U/V (10)
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evaluation results. The Prediction class contains all data and
methods necessary for property predictions, including the
molecular structure, methods, and method parameters. The
Property class contains all data on a particular property and
the fitting equations. The Model class provides full imple-
mentation of an equation, and each instance of the class stores
parameters for a particular property. The modular structure
of the program allows equations to be added and inter-
changed without changes to the evaluation procedures.

The interface model (Figure 7) is based on three steady
states. The first appears when the program is started, and
the only user option is to select a compound for evaluation.
After selection, all experimental data for the selected
compound are extracted from the TDE-SOURCE database
or from a file saved previously. If structural information is
not in TDE-SOURCE, the user is requested to draw the
structure. After selection of a compound (second steady
state), the user can revise source data, add proprietary (‘user’)
data, and start evaluation. After evaluation, in the third state,
the user can review evaluation results and request alternative
equations. All the functions of the second state remain
available, and the user can modify data and repeat the
evaluation as desired.

Data Communication. NIST/TRC in cooperation with
DIPPR (the Design Institute for Physical Properties of the
American Institute of Chemical Engineers) and IUPAC (the
International Union of Pure and Applied Chemistry) devel-
oped ThermoML, an XML (Extensible Markup Language)-
based approach for storage and exchange of thermophysical

and thermochemical property data.4,17,30XML technology31

provides significant advantages for data exchange such as
its ‘native’ interoperability based on ASCII code, modular
structure, and transparent readability by both humans and
computers. Both the software and hardware communities
support this technology extensively. In 2002, IUPAC ap-
proved project 2002-055-3-024, XML-based IUPAC Stan-
dard for Experimental and Critically Evaluated Thermo-
dynamic Property Data Storage and Capture,32 and estab-
lished a Task Group to conduct it as one of the activities of
the Committee on Printed and Electronic Publications.33 At
its meeting in January 2004,34 the Task Group accepted
ThermoML as the framework of an emerging IUPAC
standard and approved the establishment of the ThermoML
namespace for it.35

ThermoML is fully implemented in TDE as the primary
method of data communication. TDE accepts user data files
in ThermoML format, and all evaluation results are available
in the form of a ThermoML file. That file includes compound
identification, numerical values of evaluated properties (with
defined uncertainties), and default and alternative equations
with their parameters and covariance matrices. ThermoML
output can be automatically parsed and processed by ap-
plications such as process simulation engines. Required
components are the ThermoML schema and definition files
for equations, both of which are available at the NIST/TRC
Web site (www.trc.nist.gov/ThermoML.html). Equation defi-
nition files contain the mathematical definitions for equations
through importation of the MathML schema36 and define

Figure 7. Operational model of the TDE program. Text in bold indicates the three steady states of the program, as described in the text.
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symbolic representation of equation variables and parameters.
The ThermoML schema can be used by validating parsers
when reading ThermoML data files. Equation definition files
provide Supporting Information about the equation that may
assist development of readers for ThermoML equations.
ThermoML supports all TDE equations explicitly, and the
ThermoML definitions of all TDE equations are available
at the NIST/TRC web site noted above.

5. ENFORCEMENT OF THERMODYNAMIC
CONSISTENCY

Levels of Consistency Enforcement. Three different
levels of consistency enforcement are employed within
TDE: single-property enforcement (constraining a single
fitting equation to be consistent with other properties), in-
block enforcement (constraining several equations within one
property block to be mutually consistent), and interblock
enforcement involving properties from different blocks.

Single-property procedures are applied for saturated vapor
pressures to ensure consistency with heat capacity differences
between the liquid and gas phases at low pressures and to
ensure that condensed-state phase boundary lines converge
at triple points. In-block procedures are used for all vapor
and sublimation pressures (phase diagram block) as well as
for saturated liquid and gas densities (volumetric block) and
single-phase and saturated gas densities (volumetric block).
An interblock procedure refines the gas density and enthalpy
of vaporization through improved consistency with vapor
pressures and liquid densities. Consistency conditions are
either introduced with appropriately high weights to the
objective functions or are implied by common parameters.
Details of each example are provided in the following
paragraphs.

Vapor Pressure Constraint. Constraint of vapor-pressure
extrapolations to low temperatures with liquid-gas heat
capacity differences is a common technique.37 TDE uses an
analogous approach. Assuming the difference in compress-
ibility factors Z for the gas and liquid (Zg - Zl) ) 1 at low
temperatures wherepsat < 10 kPa, the heat capacity differ-
ence ∆Csat between the saturated liquid and gas can be
derived from the temperature dependence of the vapor
pressure

Csat(g) can be approximated by the heat capacity of the ideal
gas at such low pressures. Available validated ideal-gas heat
capacities38 are stored in the TDE database. These evaluated
values are used in preference to any experimental values
stored in TDE-SOURCE. The heat capacity conditions
represented in eq 11 with the weights based on heat capacity
uncertainties are added to the objective function for vapor
pressure forpsat < 10 kPa with steps of 10 K.

Condensed-State Phase Boundary Convergence. Equa-
tions describing condensed-state phase boundaries (crystal-
liquid and crystal-crystal) are constrained to converge at
triple points. The polynomial form of the equations used for
these boundaries allows simple fulfillment of this constraint
through the representation equation

whereTtp andptp are respectively the triple-point temperature
and pressure andai are polynomial coefficients.

Vapor and Sublimation Pressure Convergence. When
one or more sublimation curves are known, in addition to
the vaporization curve, they must be consistent at the triple
point(s). Two consistency conditions are enforced in TDE.
First, adjacent vapor pressure and sublimation curves must
converge to the same triple-point pressureptp. This is
expressed by the following equation

The second condition is that the difference between the
enthalpies of sublimation and vaporization derived from the
pressure equations atTtp must yield the enthalpy of fusion.
If ptp < 10 kPa and∆Z is assumed to be 1, this second
condition can be expressed as

All of the fitted equations are accompanied by their relative
weights. Those for experimental and vapor pressure data are
the same as those used to fit the properties individually. The
weights for the two enforcement conditions (eqs 13 and 14)
are calculated with the following equation. For eq 13, the
weight wA is

whereWvp is the sum of the weights for the vapor pressure
data andWsub is the sum of the weights for the sublimation
pressure data. The formulation results inW being closely
related to the lesser ofWvp andWsub. For eq 14, the weight
wB is

whereU∆fusH is the expanded combined uncertainty for the
enthalpy of fusion∆fusH. This approach is needed because,
generally, there are very different amounts of experimental
data in each phase region. The constantsκA and κB are
determined empirically to optimize the fitting performance.

The results of enforcement of thermodynamic consistency
at Ttp are illustrated in Figure 8. Applying these conditions
can lead to an invalid shape of the vapor pressure and
sublimation curves, if the source data are highly erroneous
and inconsistent. In that case, it is necessary to decide which
property is most likely erroneous and to derive the equation
for it from the other properties. Generally, sublimation
pressures are more prone to measurement error and, conse-
quently, are rejected in such an evaluation.

Fsat(Liquid) and Fsat(Gas) Consistency atTc. Consistency
of saturated liquid and gas densities at the critical temperature
Tc is satisfied through a common parameter in the equations
(the critical densityFc) by solving a joint least-squares system
of equations. Figure 9 shows a demonstration of this

∆Csat) Csat(g) - Csat(l) ) R‚(T2‚d2ln(psat)/dT2 +
2‚T‚d ln(psat)/dT) (11)

p - ptp ) ∑
i)1

N

ai ‚(T - Ttp)
i (12)

psat(l) ) psat(cr) atT ) Ttp (13)

-R‚T2‚[d ln{psat(l)}/dT - d ln{psat(cr)}/dT] ) ∆fusH
(14)

wA ) κA‚(1/Wvp + 1/Wsub)
-1 ) κA‚W (15)

wB ) κB‚(1/Wvp + 1/Wsub)
-1/U∆fusH

2 ) κB‚W/U∆fusH
2

(16)
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enforcement. The mathematical forms of the equations ensure
an infinite slope atTc.

Gas-Phase Densities:Fsat(Gas) and the Virial Equation.
The authors are unaware of an equation suitable for
representation of low- and high-pressure gas densities with
low experimental data coverage. To address this problem, a
combination of the virial equation (as function of molar
volume) at low pressures and the saturated-phase density
equation at high pressures is used for the gas phase. The
smooth connection point is below 500 kPa if the virial
equation is limited to the second virial coefficient or above
0.85‚Tc if the third virial coefficient is included. The third
virial coefficient is used, if a prediction can be made or
experimental data are available forF(gas) forp > 500 kPa.
(Note:Densities forT > 0.85‚Tc in the single-phase gas are
not represented in version 1.0 of TDE. Also, all single-phase
densities forT > Tc (i.e., the fluid region) are not represented.

Representation of these regions is planned for a future release
of the program.) The consistency conditions at the connection
temperatureTΘ are as follows: (1) the saturated density and
(2) its first derivative by temperature derived from the virial
and vapor pressure equations must be equal to those derived
from the saturated gas density equation:

WeightswC for the enforcement conditions (eqs 17 and 18)
are the same and are

whereWF(gas) is the sum of the weights for the single-phase

Figure 8. (a) Vapor pressure and sublimation curve for pyrrole without enforcement of consistency atTtp. (b) The same data scenario with
automatic enforcement of thermodynamic consistency in terms of value and relative slope atTtp. The relative slopes are directly related to
the enthalpy of the phase transition (∆fusH for the melting transition).

Fvirial(TΘ, psat(TΘ)) ) Fsat(TΘ) (17)

dFvirial(TΘ,psat(TΘ))/dT ) dFsat(TΘ)/dT (18)

wC ) κC‚{1/WF(gas)+ 1/WFsat(gas)}
-1 ) κC‚W (19)
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gas density data andWFsat(gas)is the sum of the weights for
the saturated gas density data. As for eq 15 above, the
formulation results inW being closely related to the lesser
of WF(gas) and WFsat(gas) with the constantκC determined
empirically.

Consistency ofFsat(Gas) with Enthalpies of Vaporiza-
tion Derived from Vapor Pressurespsat and the Clapeyron
Equation. A similar procedure is used for interblock
consistency enforcement before the end of an evaluation.
Revised equations are a virial equation for single-phase gas
density at low pressures, a saturated gas density equation at
high pressures, and an enthalpy of vaporization equation.
Other involved properties are vapor pressure and liquid
density. The objective function is the sum of squares of the
deviations from the fitted equations (both the property
representations and enforcement conditions) multiplied by
appropriate relative weights. The objective sum is minimized
by a nonlinear optimization technique. The virial equation
is represented in the nonlinear formF(gas)) f(T, p). This
form is used to ensure that the equation gives a solution at
the saturation pressure, even with little or no experimental
data near the saturation line.

In addition to the source data and seamless connection
conditions described in the previous section (eqs 17 and 18),
consistency of the enthalpy of vaporization∆vapH derived
from thepsatcurve together with the gas and liquid densities
(converted to molar volumesVm) through the Clapeyron
equation

is enforced with∆vapH represented by the equation

whereai andTr ) T/Tc are fitted parameters. Equation 21
ensures a valid shape for the∆vapH values derived with eq
20 even in the absence of experimental∆vapH values. This

condition is constrained at separate temperatures with a step
of 5 K. The weightwD for the consistency equation (eq 20)
is

whereU∆vapH is the uncertainty calculated with the covariance
matrix for eq 21. The effect of this interblock consistency
enforcement is shown in Figure 10.

6. APPLICATION OF PREDICTION METHODS

Background. The aim in development of predictions in
TDE was not to invent new methods but to implement an
algorithm for applying existing methods to create an ap-
proach that is broadly applicable across all classes of organic
compounds. The most important aspect of this approach is
that all methods be validated against critically evaluated
experimental data. This provides the basis for estimations
of uncertainty for all predicted values. The requirement of
uncertainty estimation is essential for integrating predicted
data into the TDE evaluation process. As described earlier,
all data used by TDE have associated estimates of their
expanded combined uncertainties with approximate levels
of confidence of 95%. The initial release of the TDE software
(version 1.0) includes methods based on the principles of
corresponding states (CS) and group contribution (GC).
Additional, more computationally intensive prediction schemes,
such as molecular dynamics or ab initio quantum methods,
will be considered for future releases, particularly as reliable
bases for estimates of combined uncertainties for these
methods are developed. Though applied specifically to CS
and GC methods, the general approach described here can
be applied universally.

The general approach for validation of predictive methods
and estimation of their combined uncertainty is described
here. For this, it is necessary to give quantitative definitions
to two terms used in molecule comparisons that are qualita-

Figure 9. Demonstration of enforced consistency between the saturated density for the liquidFsat(l) and gasFsat(g) curves at the critical
point.

∆vapH ) T‚(dpsat/dT)‚{Vm(g) - Vm(l)} (20)

ln(∆vapH) ) a1 + ∑
i)2

nTerms

ai‚Tr
i-2‚ln(1-Tr) (21)

wD ) κD‚{1/WF(gas)+ 1/WFsat(gas)}
-1/U∆vapH

2 )

κD‚W/U∆vapH
2 (22)
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tive in nature: similarity and complexity. The mathematical
definitions of these are not universal and can vary from
property to property or method to method, depending on the
sensitivity of the property or method to the presence of
particular substructures or functional groups.

General Prediction Approach. The key issue in develop-
ing a property prediction system is how to recognize strengths
and shortcomings for a particular method so that the best
method can be selected for a given molecule and property.
Generally, there are two serious problems with predictive
methods. First, the predictive ability is often quite limited,
due to an inadequate experimental data set against which
the parameters of the method were optimized. Parameters
optimized with a small data set tend to have a bias toward
the structural features represented in that set. This bias can
cause serious errors when the parameters are used to predict
properties of compounds with features beyond those in the
small set. Second, during development, there is often little
performance evaluation to investigate the predictive capabili-
ties of the method. In part, this problem can be traced to a
lack of experimental data. Only predictions for compounds
not included in the original development can provide a valid
test for that method, which in turn requires the availability
of new data on previously unmeasured compounds. Conse-
quently, knowledge of the predictive ability of a method is
often poor.

The approach used within TDE was developed to address
these problems and to provide reliable property predictions
by making the best use of available experimental data and
correlations. The design principles for this approach follow.

• Establish a physicochemical property database that
contains critically evaluated experimental data with reliable
estimates of uncertainty.

• Create a predictive method performance database by
evaluating methods against the critically evaluated data.

• Examine the validity (against established data correla-
tions) of predicted property values for a large number and

variety of compounds for which no experimental data are
available and develop rejection criteria based on these results.

• Implement an automated, case-based method selection
scheme with the ability to select the method with the best
performance for compounds most similar to the query
compound.

• Estimate uncertainties for the predicted property values
based on (a) the performance of the method for similar
compounds and (b) the complexity of the query compound.
(Mathematical definitions for similarity and complexity are
given later in this section.)

The overall algorithm implementing these design criteria
is shown in Figure 11. The collection of critically evaluated
properties used with the prediction scheme for TDE contains
about 880 normal boiling temperaturesTb, 550 critical
temperaturesTc, 450 critical pressurespc, 350 critical
volumesVc, 680 liquid density values atTb, and 270 acentric
factors. This evaluated data set was created through single-
property and multiproperty consistency checks and provides
a collection that exceeds that used in the production of any
specific prediction method, thus allowing for a performance
analysis based on data outside of the original set used in
parameter optimization.

TDE (version 1.0) uses two types of predictive methods:
group contribution (GC),29,39corresponding states (CS),29 and
their combination (GC-CS). CS methods require knowledge
of the critical properties, which must be estimated by a GC
method, when no experimental critical properties are avail-
able, as is the case for most compounds. The only input
requirement for a GC method is structural information, which
can be expressed as an atom connectivity table. Based on
the connectivity table, the TDE software extracts groups
defined for each GC method. Currently, TDE includes atom
connectivity tables and images for 14 000 organic com-
pounds. A simple structure drawing interface is provided for
input of structures not included.

Figure 10. Action of interblock consistency enforcement on the saturated gas densityFsat(gas) in an unfavorable data situation. Data are
shown in terms of the compressibility factorZ. Values with large error bars at high temperature are low-quality experimental values. The
curve represents the evaluated values forFsat(gas) expressed in terms ofZsat(gas).
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Table 4 shows the complete list of properties for which
predictive methods are available in TDE 1.0. Expansions to
include additional properties and those of mixtures and
reactions are planned. The workflow for the predictive
approach in TDE can be summarized as follows. For any
particular compound, TDE searches the TDE-SOURCE
database for relevant experimental data, does preliminary data
processing, and provides the predictive method with all
pertinent experimental data values and atom-connectivity
information. When the structural information for a compound
is not available, the user is allowed to draw the structure,
and the connectivity table is produced by TDE. Group
parameters are then extracted and used to compute complex-
ity and similarity information needed for method selection
and uncertainty estimation.

Except for a few properties, such as normal boiling
temperatureTb, estimation requires other property values as
input. For example, most estimation methods for critical
temperature requireTb, while for the method of Sastri and
Rao51 (for liquid viscosity),Tb, Tc, pc, and the acentric factor
are needed. To address this issue, the estimation of properties

must be carried out in a carefully constructed sequence,
which is shown in Figure 12.

Prediction Method Selection. The case-based method
selection algorithm used in TDE is based on performance
information compiled for all methods for compounds with
well-established properties that are similar to the query
compound. For properties having multiple prediction methods
(Tbp, Tc, pc, andVc in TDE 1.0) automated selection is based
on the best performance for similar molecules (BPSM). This
approach was chosen after analysis of various others,
including averaging of results from all available methods,
weighted average of all methods based on performance
against similar molecules, and an average of the two or three
best methods. To clarify and quantify how the BPSM
approach works, an example for prediction of critical
temperatureTc is given here.

In this example, four group contribution methods forTc

prediction (listed in Table 4) are tested against 399 organic
compounds for which critically evaluatedTc values are
available with small uncertainties. Table 5 shows the average
absolute deviations and standard deviations of predictedTc

Figure 11. Outline of the property prediction approach.
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for the methods and the BPSM technique relative to the
critically evaluatedTc values for the test compounds. Table
5 also lists the number of compounds with deviations greater
than 10 K between predicted and critically evaluatedTc

values. The results indicate that the BPSM approach produces
far fewer large deviations than any of the individual methods.

Collectively, the results shown in Table 5 demonstrate that
the BPSM approach is superior to any one of the four
methods alone.

Another measure of the success of the BPSM approach is
shown in Table 6, which lists the “correctness” of method
selection for compounds considered in the test. For the 399
compounds in the test, the method providing theTc prediction

Figure 12. Workflow for property prediction. Properties predicted are the normal boiling temperature,Tbp; critical temperature,Tc; critical
pressure,pc; critical volume,Vc; critical compressibility,Zc; acentric factor,ω; liquid density,F(l); ideal gas heat capacity,Cp(IG); liquid
heat capacity,Cp(l); gas viscosity,η(g); liquid viscosity,η(l); gas thermal conductivity,λ(g); and liquid thermal conductivity,λ(l).

Table 5. Average Absolute Deviation∆h and Standard Deviationσ
of CalculatedTc from Critically EvaluatedTc for 399 Organic
Compounds by Various Prediction Methods and the Best
Performance on Similar Molecules (BPSM) Approach

method ∆h /K σ/K N∆ > 10 Ka

Joback and Reid40 7.1 11.3 90
Wilson and Jasperson43 5.8 7.9 75
Constantinou and Gani41 15.4 29.2 132
Marrero and Pardillo42 5.2 9.1 59
BPSM 3.5 5.5 26

a The final column represents the number of compoundsN∆ for which
the deviation of the predicted value from the critically evaluated value
is greater than 10 K.

Table 6. Correctness of Model Selection Using the BPSM (Best
Performance on Similar Molecules) Approach for Prediction ofTc

correctnessa compounds percent

A 203 51
B 113 28
C 64 16
D 19 5
total 399 100

a Correctness is defined as follows: A) the best method was
selected, B) the second best method was selected, C) the third best
method was selected, D) the poorest method was selected.
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closest to the critically evaluated value was chosen for 203
compounds (51%). For 113 compounds the method that
produced the second smallest deviation was selected, for 64
compounds the method producing the third smallest deviation
was selected, and the worst available method was selected
for 19 compounds. Of these 19 compounds, only seven have
deviations from the critically evaluated values greater than
10 K. This performance is far better than any single method
and is the best of any of the composite methods tested.

Figure 13 shows the general algorithm of the prediction
method selection scheme. For each query compound, TDE
analyzes its structural components, gathers information from
the related method performance table, finds the five com-
pounds that are most similar to the query compound (as
defined in the next section), and uses the method that
produces the smallest errors for the five similar compounds
to predict the property for the query compound. Currently,
method performance information has been established for
normal boiling temperatureTb, critical temperatureTc, critical
pressurepc, and critical volumeVc.

Similarity of Organic Compounds. The concept of
compound similarity plays a key role in TDE both in
selection and error estimation for prediction methods. There
is no unique definition for similarity because the attributes
that make molecules similar for one application will not
necessarily be the same for another. For example, similar
compounds in Quantitative Structure-Property Relationships
(QSPR) can be very different from those in Quantitative
Structure-Activity Relationships (QSAR), because of dif-

fering sensitivities to stereostructural features, substructure
size, and functional group types.

Within TDE, molecule similarity is used for selecting
suitable prediction methods for each query compound based
on results for similar molecules. Considering that the number
and type of functional groups in a compound play a major
role in determining its thermodynamic properties, the simi-
larity definition used in TDE is based on differences in
functional group numbers and types. We define similarityS
as

whereD represents differences between two compounds (A
and B) and is expressed as

In this equation,wi is the weighting factor for theith type
structural group,NA and NB are the number of groups of
type i in each compound, and the summation is over all
structural groups present in the two molecules. The weighting
factors are necessary because, for example, highly polar
groups, such as-OH, -COOH, and-NH2, can have a
larger impact for certain properties (such asTb) than nonpolar
groups.

The two molecules shown in Table 7 are used here in a
sample calculation of the quantitative measure of similarity.
The difference between the molecules is expressed as

Various weighting factorsw for each functional group are
defined and used in TDE. The factors are assigned according
to the influence of each functional group on the particular
property being predicted.

Complexity. The complexity of a compound is an
important factor that can have a substantial effect on the
reliability of property estimations. Experience shows that
predictions for complex compounds, such as molecules with
multiple polar groups or fused rings, generally have larger
deviations from reliable experimental values than those for
simpler molecules such as short-chain alkanes or compounds
with single functional groups. Therefore, it is necessary to
define molecular complexity mathematically so that uncer-
tainties of predicted properties can be estimated with
confidence.

Like similarity, it is not possible to define molecular
complexity in a generalized way for all compounds, because
the complexity of a compound is closely related to the

Figure 13. Workflow for prediction method selection based on
performance against critically evaluated property data.

Table 7. Identification of Structural Groups Used for Compound
Similarity Analysisa

a r indicates that the group is part of a ring structure.

S ) 1/(1 + D) (23)

D(A,B) ) ∑wi‚{NA - NB}i (24)

D(A,B) ) 2w(rCH)) + 2w(rC)) + 2w(-CH3) (25)
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property being considered. Therefore, the definition of
complexity is problem specific. We have defined a set of
rules (Table 8) for calculating complexity for a compound.
For any compound, its complexity can be obtained by
combining the group complexity values in Table 8. The
complexity of a compound is related to the group types and
numbers of groups in a compound. This set of rules was
compiled based on analysis of results for normal boiling
temperaturesTb and critical properties and is expected to be
suitable for most other pure compound properties. The rules
connect the features of a compound as described by its
structural components (i.e., groups) with the reliability of
related group contribution methods in the prediction ofTb

and critical properties. For example, then-alkanes of 30 or
40 carbon atoms may not be generally considered as complex
compounds, but within TDE, their calculated complexity is
relatively high because the predictive methods cannot predict
their critical properties with high reliability. The concept of
compound complexity is used in TDE to help provide the
most reliable uncertainties estimates possible. Our under-
standing of the relationships between molecular structure and
a method’s reliability is limited, and modifications to the
definition of complexity in Table 8 may be made as analyses
for additional property types and prediction methods are
completed.

Uncertainty Estimation for Predicted Values. Estimates
of the combined expanded uncertaintyU for predicted
properties in TDE are a function of the average deviations
from the critically evaluated data set for similar molecules
∆h and the complexityC of the query compound, based on
the rules listed in Table 8. Different specific formulas may
be employed for different properties. ForTb and Tc, the
following formula is adopted:

Here, c1 and c2 are coefficients that are obtained by
minimizing the difference between estimated uncertainties
and prediction deviations from critically evaluated values.
For example, the coefficients in eq 26 forTc were determined
to bec1 ) 1.2 andc2 ) 2.2. The estimated uncertainties for
predictedTc by the BPSM method for the 399 organic
compounds in the critically evaluated data set were calculated
and were found to be greater than or equal to the observed
difference in 95% of the cases with an average value of 9.8
K, which is not excessively large.

In summary, an approach for property prediction has been
implemented in TDE that relies on a method performance
database and quantitative measures of the similarity and
complexity of compounds. With this information a robust
prediction scheme is provided with realistic estimates of
expanded combined uncertainties for all values.

7. CONCLUSIONS AND FUTURE DEVELOPMENT

(1) NIST ThermoData Engine (TDE)1 complies with all
the requirements necessary for implementation of the dy-
namic data evaluation concept. The scope of the first version
of TDE is limited to pure compounds.

(2) Predictive capabilities of the first TDE version consist
of 28 predictive methods based on group contribution and
corresponding states principles and limited to the compounds
whose molecules consist of carbon, hydrogen, oxygen,
nitrogen, sulfur, fluorine, chlorine, bromine, iodine, and, in
some instances, silicon.

(3) Further development will include incorporation of
computational tools for generating equations of state on-
demand depending on the data ‘scenario’ as well as
implementation of daily updates of the TDE-SOURCE local
data storage facility for TDE using a Web multitier dis-
semination architecture. Longer-term plans include expansion
of TDE to include critical data evaluation for binary mixtures
and incorporation of predictive methods beyond group
contribution and corresponding states techniques.
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Table 8. Rules for Calculating ComplexityC a

condition effect on complexity (C)

beginning complexity for all molecules C ) 1
for each>CH- group +1
for each>C< group +2
if molecule has groups from class 1 + 2 ‚ (N1 - 1)b

if molecule hasdCd groups + 2 + 4 ‚ (Nd - 1)c

if molecule has groups from class 2 + 3 + 5 ‚ (N2 - 1)b

if molecule has groups from class 3 + 4 + 10 ‚ (N3 - 1)b

if molecule has exactly one carbon group
from class 4

+ 5

if molecule has exactly two carbon
groups from class 4

+ 3

if molecule contains a single ring with
3, 4, or 5 atoms

+ 30

if molecule contains a single ring with
6 or 7 atoms

+ 10

if molecule contains a single ring with
8 or 9 atoms

+ 20

if molecule contains a single ring with
more than 9 atoms

+ 30

if molecule contains two rings + 30
if molecule contains more than two rings + 50

a Complexity is determined based on the following classes of
groups: Class 1: carbons with double or triple bonds not connected
to O or N exceptdCd. Class 2: F, Cl, Br, I,-N<, -CN, -SH,
-S-. Class 3:-OH, -O-, >CO,-CHO,-(CdO)OH,-(OdC)O-,
-NH2, >NH, -N), NH), -NO2, >SO, >SO2. Class 4- class 1
plus-CH3, >CH2, >CH-, >C<. b N1, N2, andN3 are the number of
groups from class 1, 2, or 3, respectively.c Nd is the number of
dCd groups.

U ) c1‚ ∆h + c2‚C
0.5 (26)
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